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ABSTRACT 
 
This research provides a comparative study of intelligent systems in structural damage estimation after the 
occurrence of an earthquake. Structural safety and damage status of buildings after earthquakes is always in the 
forefront. Seismic response data of a reinforced concrete (RC) structure subjected to one-hundred different levels 
of seismic excitation are utilized to study the structural damage pattern. The structural damage is described by a 
well-known damage index, the Maximum Inter Story Drift Ratio (MISDR). Through a time-frequency analysis 
of the examined accelerograms, a set of seismic features is extracted. The relationship between seismic features 
and MISDR is investigated and proved to be strong. The aim of this paper is to analyze the performance of two 
different techniques for the set of the proposed seismic features; a Mamdani-type and a Sugeno-type fuzzy 
inference system (FIS). The performance of the models is evaluated in terms of the mean square error (MSE) 
between the actual calculated MISDR value and the estimated MISDR value derived from the proposed models, 
for the RC structure under the same seismic event. Experimental results show that the Mamdani FIS outperforms 
the Sugeno model in the case of MISDR estimation.  
 
Keywords: Fuzzy inference system (FIS); Mamdani; Sugeno; Maximum inter-story drift ratio (MISDR); 
structural damage index 
 
 
1. INTRODUCTION  
 
This paper is motivated by the major problem of managing the damages and life-safe resources in 
urban areas after the manifestation of an earthquake. Its objective is to estimate potential structural 
damage on the affected area avoiding either nonlinear dynamic analysis of structures or post-seismic 
inspection of buildings. In order to perform structural damage estimation, two techniques based on FIS 
are developed. The fuzzy modeling techniques are based on Mamdani-type and Sugeno-type fuzzy 
models. The two models receive the same input data. The input data comprises an efficient set of 
newly extracted seismic intensity parameters. The results of the two FIS are compared. This paper 
underlines the differences between the two schemes and shows the better choice for the problem under 
study.  
Among the data-driven methods, fuzzy methods are able to efficiently solve complex problems and 
reduce upcoming uncertainties. FIS are appealing for researchers and have found applications in 
various fields of science (Zhao et al. 2013; Song et al. 2013; Gao et al. 2012). The most appealing 
characteristic of fuzzy models is that they are able to describe complex and nonlinear problems (Zadeh 
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1965). The fuzzy rules, which contain the input information, are easily interpretable. Furthermore, 
they provide a simple interface for extending the model with additional information by adding new 
rules or alternate the existing ones. The advantages of fuzzy techniques can be summarized as follows: 
1) allow comprehensible definitions of knowledge of the system through "if-then" rules, 2) deal with 
the inherent uncertainties like experts approach their problems, 3) are based on a solid mathematical 
basis and 4) combine numerical and categorical data. Fuzzy techniques are reported in the literature 
for damage classification (Tsiftzis et al. 2006; Andreadis et al. 2007). The proposed fuzzy models are 
not restricted to classify the damage into damage categories but estimate numerically the structural 
damage degree. Classification results may be misleading since it is common to assign the damage that 
belongs to the edges of the predefined intervals in neighboring categories. However, by utilizing the 
proposed method, one can evaluate numerically the structural damage, providing the objective picture 
of the damage status. 
The paper is organized as follows. Section 2 describes the seismic intensity features extraction 
process. Section 3 presents the motivation for the comparison of Mamdani versus Sugeno types of FIS 
and shows the development of the two schemes. Experimental results are illustrated in Section 4.  
Final conclusions are drawn in Section 5.  

 
Figure 1. Proposed methodology 

 
 
2. FUNDAMENTALS 
 
This paper introduces two model schemes based on artificial intelligence techniques to relate inputs to 
outputs. The models receive the same set of input parameters that describe both the damage potential 
of seismic excitations and the characteristics of the structure under study. The structural damage 
degree is considered as the output of the models by means of a widely-used global damage index. 
More specifically, the fuzzy models receive as input a set of four well-known and four proposed 
seismic intensity parameters. These parameters are associated with the dissipated energy and the 
frequency content of the seismic accelerogram. The output of both models is a MISDR value which 
describes the seismic structural damage potential efficiently. Figure 1 demonstrates the proposed 
methodology. The seismic feature extraction process, the definition of the utilized structural damage 
index and details for the examined frame structure, are provided in the following subsections. 
 
2.1 Seismic intensity features extraction 
 
In this work, four well-known and four newly extracted seismic intensity parameters, calculated from 
the same original definitions, are utilized. Seismic intensity parameters are divided into four 
categories: spectral intensity, spectral, energy and peak parameters (Elenas and Meskouris 2001). One 
parameter from each category is selected and calculated for the entire seismic signal; the one that is 
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proven to be the most correlated to MISDR (Elenas and Meskouris 2001). These parameters are the 
Spectrum Intensity after Housner (SIH), the spectral displacement (SD), the Arias Intensity (IA) and the 
Peak Ground Velocity (PGV). The same set of parameters is also calculated for a specified subsection 
of the initial seismic signal to form the new modified set of seismic intensity parameters, referred as 
MSIH, MSD, MIA and MPGV. The proposed seismic intensity features extraction is according to a 
recent methodology (Vrochidou et al. 2016). The process is illustrated in Figure 1 and it is briefly 
reviewed below.  
In the first step of the process, the Hilbert-Huang transform (HHT) (Huang et al. 1998) is performed. 
The HHT employs the ensemble empirical mode decomposition (EEMD) (Wu and Huang 2009) to 
decompose the signal into a finite number of intrinsic mode functions (IMFs). For each IMF is 
calculated the mean frequency value. When damage occurs to a structure, its eigenfrequency varies 
close to its original value. Thus, the IMF with mean frequency value closest (within a predetermined 
area) to the fundamental frequency of the examined structure is selected. Supposing that f0 is the 
eigenfrequency of the structure, then the proposed area is between 0.9 f0 and 1.1 f0. The selected 
frequency band is based on the integration limits suggested by Kappos for the evaluation of spectrum 
intensity (Kappos 1990). If the closest mean frequency value belongs to this area, then the respective 
IMF is selected for further analysis. If the closest mean frequency value is spaced beyond the 
predetermined region then two IMFs, those that are located on either side of the region, are selected 
and summed. 
In the second step of the process, an appropriate time-window of the selected IMF(s) is isolated. Two 
thresholds are specified for the time-window; tmin and tmax. tmin value is set to the time when the Husid 
diagram reaches the value 0.05, which is equal to the time when MISDR reaches the value 0.05, which 
is the 10% of the low-damage category threshold (set to 0.5) (Table 1). The tmax value is the time when 
the Husid diagram reaches the 80% of its maxim value, which is almost equal to the time when 
MISDR reaches 90% of its maximum value. The introduction of the time-window helps reduce the 
computational burden since, instead of the entire signal, only a part of one or two IMFs is imported to 
the following computer-supported analysis. Additionally, it represents a part of the earthquake 
duration where most of the seismic energy is released. Moreover, the time-window is directly related 
to the damage evolution of the examined structure. Finally, it helps eliminate the end effects issue 
(Huang 1998), one reported drawback of HHT, since the IMF edges are cut off. In this strong motion 
time-window are calculated the four aforementioned proposed seismic intensity parameters. 
 

Table 1. Structural damage states according to MISDR. 
 

 
 
 
In the third step of the process, the set of 8 seismic parameters is input to the FIS, and the MISDR 
value is estimated for one hundred seismic events. The development of the FIS involves a tuning 
process, to optimize the number of membership functions. The tuning process is analyzed in Section 
3.1. 
 
2.2 Structural damage index MISDR 
 
Damage indices summarize the damage evoked to a structure into a single value. MISDR can evaluate 
the level of the post-seismic damage of a structure and it is calculated according to the equation: 
 

 %100max

h

u
MISDR               (1) 

 
where |u|max is the maximum absolute inter-story drift and h the inter-story height (Structural Engineers 
Association of California 1995). The intervals of MISDR values are stated in Table 1. According to 
the ranges provided, the damage degree is classified in low, medium, large or total. These categories 
refer to minor, reparable, irreparable and severe damage or collapse of the building, respectively. 

Structural DI Low Medium Large Total 
MISDR [%] ≤ 0.5 0.5 < MISDR ≤ 1.5 1.5 < MISDR ≤ 2.5 > 2.5 
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2.3 RC structure frame model 
 
Figure 2 demonstrates the examined RC frame structure. The eigenfrequency of the 8-story model is 
0.85 Hz. The frame is designed according to Eurocode rules EC2 (2000) and EC8 (2004). The cross-
sections of the beams are T-beams with 40 cm width, 20 cm slab thickness, 60 cm total beam height 
and 1.45 m effective slab width. The distance between the frames of the structure is 6 m. The frame 
structure has been characterized as an "importance class II and ductility class medium" according to 
EC8. The subsoil is of type C and the region seismicity belongs to category 2. External loads are 
included and are corporate into load combinations as suggested in EC2 and EC8. After the design of 
the frame, a nonlinear dynamic analysis takes place and its structural seismic response (MISDR) is 
calculated through the computer program IDARC (Reinhorn et al. 2009). 
 

 
Figure 2. RC frame model 

 
 
2.4 Correlation analysis 
 
The examined fuzzy models predict a MISDR value based upon the inserted input data. In order to 
evaluate the efficiency of the seismic intensity parameters, which will be utilized subsequently as 
input data to the proposed fuzzy models, a correlation analysis is carried out. The relation between the 
seismic intensity parameters and the structural damage index MISDR is investigated. For this purpose, 
a correlation study based on Spearman rank correlation coefficient is carried out. For a set of n 
measurements of X and Y, where i=1, 2, …, n, the Spearman correlation coefficient is defined as: 
 

                                                  (2) 

 
where D is the difference between the ranking degree of X and Y, respectively. Correlation coefficient 
values greater than 0.8, indicate a strong interrelation between the parameters. Less than 0.45 indicate 
weak connection and all other cases between 0.45 and 0.8 reveal medium connection (Elenas 2001).  
Correlation between MISDR and the selected seismic parameters are presented in Table 2. Strong 
interrelation with MISDR is revealed for the set of seismic parameters, greater than 0.81 in all cases. 
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Table 2. Rank correlation coefficients after Spearman. 
 

 
 
 
 
 
 
 
3. MAMDANI VERSUS SUGENO FIS 
 
FIS have two types based on the mathematical calculation of the inference: the Mamdani-type 
(Mamdani 1977) and the Sugeno-type inference (Sugeno 1977). A Mamdani-type fuzzy rule is 
described as follows: "If A is X1 and B is X2 then C is X3", where A, B, C are variables and X1, X2, 
X3 are fuzzy sets. A Sugeno-type fuzzy rule is described as follows: "If A is X1 and B is X2 then C= 
aA+bB+c", where a, b, c are constants, A, B, C are variables and X1, X2, X3 are fuzzy sets.  
The main difference between the two schemes is in the evaluation of the output membership functions 
(MFs). In Sugeno-type FIS the output MF is a constant or linear function (allows a single output) 
while in Mamdani-type it is a fuzzy set (allows multiple outputs). Mamdani-type FIS uses 
defuzzification technique of the fuzzy output. Sugeno-type FIS uses a weighted average to compute a 
crisp output. Thus, Mamdani FIS provides an interpretable output. On the other hand, Sugeno FIS is 
more computationally efficient and has a better processing time as the weighted average technique 
replaces the time-consuming defuzzification procedure. Moreover, the Sugeno FIS is more flexible as 
it permits more than one parameters in the output. The output of Sugeno FIS is a function of the 
inputs; hence, it expresses a more distinct relation between them.  
Here, the output of the model is a single numerical MISDR value. For problems of multiple inputs and 
one output, both models can be equally utilized and a performance comparison between them can be 
provided. 
 
3.1 Development of the Mamdani FIS 
 
MISDR damage estimation is initially developed by utilizing the Mamdani-type FIS model. The 
model receives 8 input parameters and provides one output; the MISDR estimated value. The rule-
base is constructed from the input-output pairs. Input and output ranges are divided into fuzzy regions. 
Every region is determined by a MF. The performance of the model has been tested for successive 
values of MFs, starting from 4. The number of MFs has been increased until the best result has been 
obtained. The performance of the FIS is evaluated in terms of the MSE between the actual calculated 
MISDR value and the estimated MISDR value derived from the FIS, according to the equation: 
 







 1

2

estimatedcalculated

1

j

MISDRMISDRMSE                                        (3) 

 
where ν is the number of samples (the set of examined seismic events). Figure 3 demonstrates the 
evolution of the average MSE for different number of MFs. Optimal performance is achieved for 10 
MFs for input and output parameters.  
The parameters that define the MFs are subsequently defined through a genetic algorithm (GA) 
(Sivanandam and Deepa 2008). The determination of the appropriate parameters is an optimization 
problem. GAs are extensively employed to resolve fuzzy optimization problems (Kaya and Alhajj 
2011; Tang et al. 1998). Triangular MFs are utilized in this work. In order to define a triangular MF is 
essential to designate three variables, the minimum, center and maximum values. These values are 
determined by the tuning process. For 8 input parameters and one output of 10 MFs each, the tuning 
variables rise to 270. An objective function is required to evaluate the potential solutions. The 
objective function of this work is the MSE between the calculated and the estimated value of MISDR 
defined from Equation 3. The GA searches for the optimal solution to minimize the MSE. It starts with 

 
Seismic parameters 

IA MIA SIH MSIH SD MSD PGV MPGV 

MISDR 0.85 0.87 0.92 0.81 0.89 0.85 0.82 0.82 
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20 individuals as initial population. The optimized parameters are encoded in a vector of double values 
and scaling function is set to rank. A number of genetic operators are utilized. The selection function 
is roulette, crossover function is scattered, mutation technique is Gaussian and migration direction is 
forward. The number of generation is set to 100 and fitness tolerance to the order of 10-8. 
 

 
Figure 3. Average MSE for MISDR estimation according to the number of MFs 

 
 

 
Figure 4. Evolution of objective value in the GA optimization 

 
Figure 4 illustrates the evolution of the objective value during the optimization process. The GA 
finishes after 51 iterations due to fitness tolerance. Figure 5 demonstrates the MFs for the FIS input 
variables IA and ΜPGV as determined by the optimization process. 
 

 
(A)                                                                      (B) 

Figure 5. Ten tuned MFs for the FIS input variables (A) MSD and (B) SIH 
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3.2 Development of the Sugeno FIS 
 
The development of the MISDR damage estimation model utilizing Sugeno FIS is the same as the 
Mamdani FIS. In order the two models to be directly comparable, all initial setting remains the same. 
The model receives the same set of information from 8 input parameters and derives one output, the 
MISDR estimation value. The rule-base for the Sugeno FIS is the same as for the Mamdani FIS. Same 
remains the triangular MFs for the input parameters as there were defined from the optimization 
process. 

 
Table 3. Examined ground motions (Natural earthquakes are marked in bold font). 

 

 
 
4. EXPERIMENTAL RESULTS 
 
A set of 100 seismic excitations, natural and artificially generated, are utilized to train and test the two 
models. Natural accelerograms are derived from the Pacific Earthquake Engineering Research Center 

No Earthquake [Date/Station/Component] 

      MISDR 
    Calculated No Earthquake [Date/Station/Component] 

     MISDR 
   Calculated 

   1 Kobe [Jan16,1995/KJM/000] 7.88  51 Imperial Valley [Oct15,1979/E.C.C. FF/002] 1.48 
   2 Tabas(art.1) [Sep16,1978/Tabas/LN] 6.15  52 Erzican [Mar13,1992/Erzican/ EW] 1.40 
   3 Tabas [Sep16,1978/Tabas/TR] 5.95  53 Northridge [Jan17,1994/C.Coun./000] 1.35 
   4 Gazli(art.1) [Mai17,1976/Karakyr/000] 5.79  54 Erzican(art.3) [Mar13,1992/ Erzican/ EW 1.29 
   5 Tabas [Sep16,1978/Tabas/LN] 5.16  55 Friuli [May 06,1976/ Conegliano/000 1.17 
   6 Gazli(art.2) [May17,1976/Karakyr/000] 5.11  56 Coyote Lake[Aug 06,1979/C.Lk D-S.M./160] 1.04 
   7 Tabas(art.2) [Sep16,1978/Tabas/LN] 4.82  57 Round Valley [Nov23,1984/ M.C.S./270] 0.95 
   8 Tabas (art.1) [Sep16,1978/Tabas/TR] 4.66  58 Kocaelli [Aug17,1999/ Duzce/180]   0.943 
   9 Tabas(art.3) [Sep16,1978/Tabas/LN] 4.56  59 Baja(art.1) [Feb07,1987/Cerro Prieto/161] 0.94 
 10 Kobe(arti.1) [Jan16,1995/KJM/000] 4.49  60 Baja(art.2) [Feb07,1987/Cerro Prieto/161] 0.91 
 11 Gazli(art.3) [May17,1976/Karakyr/000] 4.28  61 Baja(art.3) [Feb07,1987/Cerro Prieto/161] 0.89 
 12 Tabas(art. 1) [Sep16,1978/Dayhook/LN] 4.21  62 Baja [Feb07,1987/Cerro Prieto/161] 0.88 
 13 Kobe(art.2) [Jan16,1995/KJM/000] 3.88  63 Oroville [Aug02,1975/Med.Center/246] 0.87 
 14 Kobe(art.3) [Jan16,1995/KJM/000] 3.84  64 Oroville(art.1) [Aug02,1975/Med.Center/246] 0.8 
 15 Erzican(art.1) [Mar13,1992/Erzican/NS] 3.65  65 Oroville(art.2) [Aug02,1975/Med.Center/246] 0.79 
 16 Erzican [Mar13,1992/Erzican/NS] 3.63  66 Oroville(art.3) [Aug02,1975/Med.Center/246] 0.78 
 17 Tabas (art.2) [Sep16,1978/Tabas/TR] 3.51  67 Victoria(art.1) [Jun09,1980/Chihuahua/102] 0.71 
 18 Erzican(art.2) [Mar13,1992/Erzican/NS] 3.34  68 Chi-Chi [Sep 20, 1999/Chy025/E] 0.67 
 19 Tabas(art.3) [Sep16,1978/Tabas/TR] 3.31  69 Victoria(art.2) [Jun09,1980/Chihuahua/102] 0.66 
 20 Dinar [Jan10,1995/Dinar/090] 3.00  70 Victoria(art.3) [Jun09,1980/Chihuahua/102] 0.65 
 21 San Salvador [Oct10,1986/G.I.Cent./090] 2.95  71 Victoria [Jun09,1980/Chihuahua/102] 0.64 
 22 Dinar(art.1) [Jan10,1995/Dinar/090] 2.86  72 Coalinga [May02,1983/P.-C.C. Sc./360] 0.60 
 23 Northridge(art.1) [Jan17,1994/C.Coun./000] 2.74  73 Spitak(art.1) [Dec07,1988/Gukasian/000] 0.57 
 24 Northridge(art.2) [Jan17,1994/C.Coun./000] 2.68  74 Spitak [Dec07,1988/Gukasian/000]   0.552
 25 Victoria [Jun 09, 1980/Cerro Prieto/045] 2.52  75 Spitak (art.2) [Dec07,1988/Gukasian/000] 0.54 
 26 San Salvador(art.1) [Oct10,1986/G.I.Cent./090] 2.45  76 Tabas [Sep16,1978/Dayhook/ LN] 0.45
 27 Duzce [Nov12,1999/Bolu/000] 2.39  77 Coalinga [Jul22,1983/ CHP/000] 0.42
 28 Duzce(art.1) [Nov12,1999/Bolu/000] 2.38  78 San Fernando [Feb09,1971/Fort Tejon/000]   0.395
 29 Kobe [Jan16,1995/Nishi-Akashi/000] 2.37  79 Hector Mine [Oct16,1999/Amboy/000] 0.39
 30 San Salvador(art.2) [Oct10,1986/G.I.Cent./090] 2.36  80 Superstition Hills [Nov24,1987/KRN/270] 0.38
 31 Victoria(art.1) [Jun09,1980/ Cerro Prieto/045] 2.31  81 Mt Lewis [Mar31,1986/Halls Valley/000] 0.37
 32 Kobe(art.1) [Jan16,1995/ Nishi-Akashi/000] 2.23  82 Kocaelli [Aug17,1999/Eregli/090] 0.35
 33 Duzce(art.1) [Nov12,1999/ Duzce/180] 2.17  83  Cape Mendocino [Apr25,1992/E.-M/000]   0.345
 34 Duzce(art.2) [Nov12,1999/ Duzce/180] 2.13  84 Duzce [Nov12,1999/1058/E] 0.34
 35 Duzce(art.2) [Nov12,1999/ Bolu/000] 2.09  85 Loma Prieta [Oct18,1989/C.L.D.D./195]   0.335
 36 Cape Mendocino [Apr25,1992/Cape M. /000] 2.03  86 Parkfield [Jun28,1966/Cholame #8/050] 0.33
 37 San Salvador(art.3) [Oct10,1986/G.I.Cent./090] 2.01  87 Loma Prieta (art.1) [Oct18,1989/UCSC/000] 0.30 
 38 Duzce(art.3) [Nov12,1999/Duzce/180] 1.99  88 Loma Prieta (art.2) [Oct18,1989/UCSC/000] 0.28 
 39 Duzce (art.3) [Nov12,1999/Bolu/000] 1.98  89 Coalinga Park [May02,1983/P.-F.Z16/090] 0.27
 40 Victoria(art.2) [Jun09,1980/Cerro Prieto/045] 1.93  90 Loma Prieta [Oct18,1989/UCSC/000] 0.26
 41 Dinar(art.2) [Jan10,1995/Dinar/090] 1.85  91 Loma Prieta (art.3) [Oct18,1989/UCSC/000] 0.25 
 42 Victoria(art.3) [Jun09,1980/Cerro Prieto/045] 1.81  92 West Moreland [Apr26,1981/B. Air./225]   0.245
 43 Erzican(art.1) [Mar13,1992/Erzican/ EW] 1.79  93 Double Springs Eq [Sep12,1994/Wood./000] 0.24
 44 Erzican(art.3) [Mar13,1992/Erzican/ NS] 1.69  94 Duzce Lam [Nov12,1999/L.st.531/N] 0.23
 45 Dinar(art. 3) [Jan10,1995/Dinar/090] 1.65  95 Hollister [Jan26,1920/H. D.Array #1/255] 0.18
 46 Erzican(art.2) [Mar13, 1992/Erzican/ EW] 1.60  96 Calindar [Nov24,1976/St.Code:37/ S49E] 0.11
 47 Superstition Hills(art.1)[Nov24,1987/KRN/270] 1.59  97 San Fransisco(art.1) [Mar22,1957/1117/010] 0.10 
 48 Duzce [Nov12,1999/Duzce/180] 1.54  98 San Fransisco [Mar22,1957/1117/010] 0.09
 49 Gazli [May17,1976/Karakyr/000] 1.52  99 San Fransisco(art.2) [Mar22,1957/1117/010] 0.08 
 50 Northridge(art.3) [Jan17,1994/C.Coun./000] 1.51 100 Irpinia Eq [Nov23,1980/Arienza/000] 0.07
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(PEER 2017). Artificial accelerograms are derived from the natural accelerograms, utilizing the 
methodology suggested by Vrochidou et al. (2014). The final data set of seismic excitations covers a 
wide range of MISDR values and displays a uniform formation; 25 accelerograms in each one of the 4 
seismic categories according to the MISDR calculated values. Table 3 provides the necessary 
information (seismic event, country, date, station and component) for the set of 100 accelerograms. In 
Table 3 are also included the calculated MISDR values for the seismic events regarding the examined 
structure. The FIS models are trained with the eight selected seismic parameters of ninety-nine seismic 
signals. 
One seismic signal is tested every time. Table 4 presents the MISDR estimation achieved with the 
Mamdani and Sugeno FIS, for every seismic event. The MSE between the estimated and the 
calculated value of MISDR for every seismic event with the two models is included in Table 5. The 
average MSE for all experiments is 0.253 with Mamdani-type FIS and 0.289 with Sugeno-type FIS. 
The results obtained show that for the given application of structural damage estimation, Mamdani-
type FIS and Sugeno-type FIS work rather similarly. 
 
 

Table 4. MISDR estimation values with Mamdani and Sugeno FIS (Misclassified signals are marked in bold 
font). 

 
 MISDR estimation  MISDR estimation  MISDR estimation  MISDR estimation 

No. of 
event 

Mamdani Sugeno 
No. of 
event 

Mamdani Sugeno 
No. of 
event

Mamdani Sugeno 
No. of 
event 

Mamdani Sugeno 

1 4.92 4.92 26 2.38 2.03 51 0.77 1.84 76 0.50 1.19 
2 6.08 5.4 27 2.55 2.89 52 2.03 1.86 77 0.32 0.315 
3 5.40 5.11 28 2.10 2.21 53 1.60 1.68 78 0.31 0.316 
4 4.94 4.94 29 2.32 2.3 54 2.15 1.69 79 0.35 1.16 
5 5.17 5.17 30 2.40 2.46 55 1.33 1.33 80 0.64 0.729 
6 5.80 5.3 31 2.12 2.12 56 1.52 1.19 81 0.32 0.123 
7 5.45 4.96 32 1.51 1.59 57 1.33 0.957 82 0.32 0.315 
8 5.34 4.75 33 2.06 1.65 58 1.65 1.26 83 0.51 0.509 
9 3.94 3.94 34 1.61 1.75 59 1.83 1.99 84 0.47 0.122 
10 3.94 3.94 35 2.10 2.1 60 1.25 1.47 85 0.36 0.325 
11 4.31 5.27 36 1.81 1.83 61 1.49 1.43 86 0.51 0.571 
12 5.39 3.1 37 2.84 2.47 62 1.70 1.95 87 0.50 0.388 
13 3.94 3.66 38 2.05 2.1 63 1.13 1.19 88 0.32 0.317 
14 3.94 3.94 39 2.13 2.11 64 1.02 1.44 89 0.31 0.455 
15 3.94 4.53 40 1.69 2.39 65 0.70 0.7 90 0.15 0.315 
16 3.94 3.94 41 1.56 2.13 66 0.87 0.509 91 0.45 0.357 
17 3.04 3.83 42 2.10 1.76 67 0.76 0.696 92 0.13 0.421 
18 3.77 2.44 43 2.21 1.99 68 1.19 1.46 93 0.13 0.122 
19 3.95 3.94 44 1.65 1.67 69 0.80 0.767 94 0.16 0.315 
20 2.91 2.5 45 1.80 2.41 70 0.76 0.799 95 0.13 0.125 
21 2.12 2.55 46 2.11 2.1 71 0.74 0.771 96 0.13 0.122 
22 2.32 2.07 47 1.83 2.4 72 0.50 0.593 97 0.12 0.12 
23 3.94 2.1 48 2.01 2.29 73 0.51 0.587 98 0.15 0.122 
24 2.80 2.1 49 1.94 1.94 74 0.51 0.509 99 0.15 0.122 
25 2.63 1.93 50 2.20 1.89 75 0.51 0.639 100 0.12 0.12 

4th  damage category 3rd damage category 2nd damage category 1st damage category 
Misclassified Mamdani: 2 Misclassified Mamdani: 1 Misclassified Mamdani: 5 Misclassified Mamdani: 1 
Misclassified Sugeno: 4 Misclassified Sugeno: 1 Misclassified Sugeno: 6 Misclassified Sugeno: 2 

Correct classification rate for all the experiments with Mamdani-type FIS: 91% 
Correct classification rate for all the experiments MSE with Sugeno-type FIS: 87% 

 
 
Table 5 also presents the average MSE for every damage category separately for both models. It is 
obvious that for both models, the average MSE is lower in the 1st damage category, in the same range 
of values in the 2nd and 3rd category and higher in the 4th damage category. This was expected since, 
according to Table 1, the MISDR value range is narrow for the category 1, in the same range of 
categories 2 and 3, and very wide for category 4. Indeed, for the 4th damage category, there is no 
upper limit. In order to estimate accurately the MISDR value for seismic signals that belong in this 
category, like in case of the seismic event No.1 (Kobe), more seismic signals of that intensity are 
required. The FIS in neither model can predict accurately this value since the training test does not 
comprise seismic events of that range of MISDR values. 
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The ability of the two models to classify the damage into damage categories is also examined, 
according to the estimated MISDR values. In Table 4 the misclassified seismic signals are marked in 
bold. Correct classification rates of 91% are achieved with the Mamdani-type FIS, while 87% with the 
Sugeno-type FIS. 
In a second experimental approach, the training process exploits eighty signals and the testing process 
twenty signals, randomly selected every time. The experiment takes place one hundred times for 
statistical reasons in order to achieve convergence. Table 6 summarizes the results, presenting the 
minimum, maximum and the median values of the MSE utilizing both models. The minimum, 
maximum and the median values of the MSE are 0.06, 1.15 and 0.21, respectively for the Mamdani-
type FIS. The median value arising from the second experimental approach is close to the total 
average MSE value (0.253) of the first experimental approach. Similarly, the minimum, maximum and 
the median values of the MSE are 0.08, 1.07 and 0.23, respectively for the Sugeno-type FIS. The 
median value arising from this approach is close to the total average MSE value (0.289) of the first 
experimental approach.  
This observation justifies the use of the proposed FIS for the MISDR estimation. Based on these 
findings, one may claim that the Mamdani type FIS outperforms the Sugeno-type FIS in case of the 
examined structural damage estimation problem. 
 
 

Table 5. MSE with Mamdani and Sugeno FIS (total average MSE for both models is marked in bold font). 
 

 MSE  MSE  MSE  MSE 
No. of 
event 

Mamdani Sugeno 
No. o
event 

Mamdani Sugeno 
No. of 
event 

Mamdani Sugeno 
No. of 
event 

Mamdani Sugeno 

1 8.762 8.762 26 0.005 0.176 51 0.504 0.130 76 0.003 0.548 
2 0.005 0.563 27 0.012 0.250 52 0.397 0.212 77 0.010 0.011 
3 0.303 0.706 28 0.078 0.029 53 0.063 0.109 78 0.006 0.005 
4 0.722 0.722 29 0.003 0.005 54 0.740 0.160 79 0.002 0.593 
5 0.000 0.000 30 0.002 0.010 55 0.026 0.026 80 0.068 0.122 
6 0.476 0.036 31 0.036 0.036 56 0.212 0.023 81 0.003 0.061 
7 0.397 0.020 32 0.518 0.410 57 0.144 0.000 82 0.001 0.001 
8 0.462 0.008 33 0.012 0.270 58 0.500 0.100 83 0.029 0.029 
9 0.384 0.384 34 0.270 0.144 59 0.792 1.103 84 0.017 0.048 
10 0.303 0.303 35 0.000 0.000 60 0.116 0.314 85 0.001 0.000 
11 0.001 0.980 36 0.048 0.040 61 0.360 0.292 86 0.032 0.058 
12 1.392 1.232 37 0.689 0.212 62 0.672 1.145 87 0.040 0.008 
13 0.004 0.048 38 0.004 0.012 63 0.068 0.102 88 0.002 0.001 
14 0.010 0.010 39 0.023 0.017 64 0.048 0.410 89 0.002 0.034 
15 0.084 0.774 40 0.058 0.212 65 0.008 0.008 90 0.012 0.003 
16 0.096 0.096 41 0.084 0.078 66 0.008 0.073 91 0.040 0.011 
17 0.221 0.102 42 0.084 0.003 67 0.003 0.000 92 0.012 0.033 
18 0.185 0.810 43 0.176 0.040 68 0.270 0.624 93 0.012 0.014 
19 0.410 0.397 44 0.002 0.000 69 0.020 0.011 94 0.005 0.007 
20 0.008 0.250 45 0.023 0.578 70 0.012 0.022 95 0.003 0.003 
21 0.689 0.160 46 0.260 0.250 71 0.010 0.017 96 0.000 0.000 
22 0.325 0.672 47 0.058 0.656 72 0.010 0.000 97 0.000 0.000 
23 1.440 0.410 48 0.221 0.563 73 0.004 0.000 98 0.004 0.001 
24 0.014 0.336 49 0.176 0.176 74 0.002 0.002 99 0.005 0.002 
25 0.012 0.348 50 0.476 0.144 75 0.001 0.010 100 0.003 0.003 

4th  damage category 3rd damage category 2nd damage category 1st damage category 
Mean MSE Mamdani: 0.668 Mean MSE Mamdani: 0.133 Mean MSE Mamdani: 0.198 Mean MSE Mamdani: 0.012 
Mean MSE Sugeno: 0.725 Mean MSE Sugeno: 0.172 Mean MSE Sugeno: 0.196 Mean MSE Sugeno: 0.064 

Average MSE for all the experiments with Mamdani-type FIS: 0.253 
Average MSE for all the experiments MSE with Sugeno-type FIS: 0.289 

 
 

Table 6. Minimum, median and maximum MSE of MISDR estimation for one hundred trials of randomly 
selected training and testing sets with Mamdani and Sugeno FIS. 

 
 Minimum Median Maximum 

MSE Mamdani 0.06 0.21 1.15 
MSE Sugeno 0.08 0.23 1.07 
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5. CONCLUSIONS 
 
In this paper, the performance of two types of FIS is examined; a Mamdani-type FIS and a Sugeno-
type FIS for structural damage estimation. The Mamdani-type FIS is primarily developed. The FIS is 
combined with a GA to tune optimally its MFs.  In the Sugeno-type FIS, MFs and rule-base are 
designed to be same as in the Mamdani-type FIS. One hundred natural and artificial earthquake signals 
are utilized to train and test the proposed models. The FIS models are trained to estimate the MISDR 
value induced by a seismic signal in a certain structure. Every tested seismic signal is inserted as input 
to the FIS, in terms of eight selected seismic parameters. 
Results reveal that the two models perform similarly in estimating the MISDR value since the average 
MSE of all experiments is almost the same; 0.253 for Mamdani FIS and 0.289 for Sugeno FIS. When 
MISDR estimation values are assigned to damage categories, correct classification of up to 91% is 
achieved with the Mamdani FIS, while 87% with the Sugeno FIS. Thus, for the given problem of 
MISDR estimation, the Mamdani-type FIS is proven to be a better choice. 
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