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ABSTRACT 
 

In the context of seismic risk analysis, the mean annual rate of failure of a structure is computed by integrating the 

seismic fragility curve with respect to the seismic hazard curve. Seismic fragility curves are used to describe the 

seismic vulnerability of structures and give the failure probability conditioned on ground motion intensity. 

Lognormal fragility curves are commonly used, while differences between lognormal and non-parametric fragility 

curves have been observed. Usually, the number of available real records is insufficient for estimating fragility 

curves with small uncertainty and synthetic ground motions are used. Here, a database of real ground motions is 

enriched with spectrally equivalent synthetic ground motions. Time-history analyses of a single degree of freedom 

structure are used to compute engineering demand parameter observations as a function of the ground motion 

intensity measure. Clustering of the intensity measure observations based on the combined real and synthetic 

ground motion database is used and an empirical distribution of the engineering demand parameter observations 

is estimated for every cluster and used to compute the probability of exceeding the damage state threshold. Thus, 

fragility curves are represented non-parametrically as failure probabilities conditioned on the intensity measure 

cluster centroids. As shown, averaging of the parametric models, which constitute the aggregate fragility curve, 

may lead to a non-parametric fragility curve, which is more precise than the un-optimized curve. 
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1. INTRODUCTION  

 

Precision and accounting for uncertainty in seismic risk assessment is critical in the case of structures 

and non-structural components in nuclear installations (Berge-Thierry et al. 2017) and critical civil 

infrastructure, such as hospitals and ports of major urban areas in earthquake prone regions (Tsionis et 

al. 2016). In seismic risk analysis, the mean annual rate of exceedance of a damage state threshold (e.g. 

failure) of a structure is a key metric and it is the result of integration of the seismic fragility function 

with the seismic hazard function (Eads et al. 2013, Silva et al. 2015). Therefore, the precision of the 

estimated annual rate of damage state exceedance depends on the precision of the seismic hazard and 

fragility curves. Seismic hazard analysis is out of the scope of this article, which focuses on precise and 

efficient analytical estimation of seismic fragility curves for critical structures. When computational 

time is a scarce resource, parametric curves are most efficient. Non-parametric fragility curve 

representations are useful when small fragility curve bias and uncertainty is the objective, as in the case 

of critical infrastructure. However, non-parametric representations have a higher computational cost 

than parametric curves and they require large ground motion data sets, typically in the form of synthetic 

ground motions. When computational time is not a scarce resource but still limited, optimization 
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techniques are required to achieve the smallest possible fragility curve uncertainty and bias with respect 

to results obtained with virtually unlimited computational time. 

 

Typically, a procedure for fragility curve estimation, such as those described by FEMA (2012) or 

D’Ayala et al. (2015), is followed. Lallement et al. (2015) review techniques for estimating parametric 

and non-parametric fragility curves and offer guidelines, e.g. when to give preference to Maximum 

Likelihood Estimation (MLE) over estimations based on the sum of squared error between the lognormal 

curve and failure fractions. Analytical seismic fragility curve estimation is based on Engineering 

Demand Parameter (EDP) observations as a function of the Intensity Measure (IM). In order to obtain 

such observations, either cloud analysis, Incremental Dynamic Analysis (IDA) (Vamvatsikos and 

Cornell 2002) or Multiple Stripes Analysis (MSA) (Jalayer and Cornell 2002) are typically performed. 

Cloud analysis consists in performing seismic response analyses with a database of unscaled seismic 

ground motions in order to compute a cloud of EDP observations as a function of the IM. In IDA, a 

limited number of seismic ground motions is used, which are scaled with an algorithm which permits 

the estimation of the collapse threshold. A general method for lognormal fragility curve estimation is 

the linear regression (Zentner 2017), which has the advantage of a closed form solution for the 

uncertainty of the fragility curve (Iervolino 2017). The most well established methods for adjusting a 

lognormal fragility curve to observations from IDA or MSA were developed by Baker (2015) and are 

based on the method of moments and MLE, respectively. Noh et al. (2015) have developed seismic 

fragility curves based on kernel smoothing, while Mai et al. (2017) used fragility curves based on kernel 

density estimation as a reference to evaluate the precision of lognormal curves with different approaches, 

which highlights the potential of higher precision estimations with non-parametric fragility curve 

representations. 

 

Here, we propose a methodology based on Parametric Model Averaging (PMA) that optimizes the 

computation of non-parametric fragility curves based on synthetic accelerograms, which are generated 

based on a database of real acceleration records, and Intensity Measure data clustering (Jain et al. 1999). 

The key element of the proposed methodology is that the synthetic signals are realizations of stochastic 

processes, each defined based on a real signal, and reproduce the ground motion variability observed in 

the real data set. The non-parametric fragility curve is expressed through the law of total probability as 

the weighted average of parametric fragility curves, each one of which is estimated based on the 

synthetic ground motions generated by the stochastic processes based on a real acceleration record. As 

result, the optimized non-parametric fragility curve using several hundred or a few thousand engineering 

demand parameter observations has a smaller 95 % confidence interval than the un-optimized curve for 

the same number of observations, and a tolerable bias with respect to the reference curve for a very large 

number of observations. 

 

 

2. SYNTHETIC GROUND MOTION GENERATION 

 

2.1 Motivation 
 

In the context of fragility curves estimation based on Monte-Carlo simulations, synthetic accelerograms 

are typically employed, because the number of high intensity real records in databases is not sufficient. 

In the literature, there are several techniques for ground motion database enrichment (e.g. Rezaeian and 

Der Kiureghian 2010, Zentner and Poirion 2012). Here, a "simple" synthetic ground motion generator 

is developed, which reproduces almost perfectly the spectral variability of real signals, because no 

hypothesis is introduced concerning their frequency content. It is worth noting that the main idea in the 

PMA methodology is that the synthetic ground motion database consists of realizations of several 

stochastic processes. Therefore the methodology herein could be used theoretically in conjunction with 

other models for synthetic ground motion generation defining stochastic processes, such as the model 

in Rezaeian and Der Kiureghian (2010). 
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2.2 Synthetic ground motion generation process 

 

The generation process in this framework begins with retaining the FFT amplitude of every real record 

in the original database, replacing the phases with a vector of uniformly distributed random values, 

computing the new ground motion via inverse FFT and imposing a modulation function. The result is a 

series of unadjusted synthetic ground motions, which are subsequently adjusted so that they are 

“spectrally equivalent” with the real records. The i-th accelerogram (i = {1, ..., Nr}) in a database of Nr 

real records may be expressed with Equation 1. The amplitudes (Ar,ik) of the i-th real record (𝛼𝑟,𝑖(𝑡)) are 

computed with the FFT and are used in combination with random phase differences (φs,ijk) in order to 

compute the j-th realization of a stationary gaussian process (Equation 2). 

 

𝛼𝑟,𝑖(𝑡) = ∑ (𝐴𝑟,𝑖𝑘𝑠𝑖𝑛(𝜔𝑘 + 𝜑𝑟,𝑖𝑘))      𝑖 = {1,… ,𝑁𝑟}
𝑛
𝑘=1  (1) 

 

𝛼𝑠t,𝑖𝑗(𝑡) = ∑ (𝐴𝑟,𝑖𝑘𝑠𝑖𝑛(𝜔𝑘 + 𝜑𝑠,𝑖𝑗𝑘))
𝑛
𝑘=1      𝑖 = {1,… ,𝑁𝑟}      𝑗 = {1,… , 𝑁𝑠} (2) 

 

where φs,ij is the phase difference modelled as random variable with a uniform distribution U(-π,π) and 

ωk is the k-th discrete angular frequency. The Nr stationary gaussian processes are converted to non-

stationary processes using Nr modulation functions given by Equation 3 (Housner and Jennings 1964). 

 

𝑞𝑖(𝑡) =

{
 
 

 
 (

𝑡

𝑇1,𝑖
)
3

0 ≤ 𝑡 ≤ 𝑇1,𝑖

1.0 𝑇1,𝑖 < 𝑡 ≤ 𝑇2,𝑖

𝑒−(𝑡−𝑇2,𝑖) 𝑇2,𝑖 < 𝑡 ≤  𝑡𝑑,𝑖

      𝑖 = {1,… ,𝑁𝑟} (3) 

 

where T1,i and T2,i are the times defining the plateau of this modulation function. Here, T1,i and T2,i are 

set equal to the times of observation of the 5 % and 95 % of the Arias intensity in the original real 

accelerogram. The Arias intensity (Ir,i) of the i-th real accelerogram is given by Equation 4. 

 

𝐼𝑟,𝑖 =
𝜋

2𝑔
∫ 𝛼𝑟,𝑖

2(𝑡)𝑑𝑡     𝑖 = {1,… ,𝑁𝑟}
𝑡𝑑,𝑖
0

 (4) 

 

Where td,i is the total duration of the i-th acceleration record. T1,i and T2,i are computed with Equations 

5 and 6. As an example, Figure 1a shows the modulation function used for the synthetic ground motions 

based on real record No. 11. The j-th realization of an unadjusted synthetic accelerogram (𝛼𝑠0,𝑖𝑗(𝑡)) 

based on the i-th real acceleration record is given by Equation 7. 

 

 
𝜋

2𝑔
∫ 𝛼𝑟,𝑖

2(𝑡)𝑑𝑡 = 0.05 ∙
𝑇1,𝑖
0

𝐼𝑟,𝑖         𝑖 = {1,… ,𝑁𝑟} (5) 

 
𝜋

2𝑔
∫ 𝛼𝑟,𝑖

2(𝑡)𝑑𝑡 = 0.95 ∙
𝑇2,𝑖
0

𝐼𝑟,𝑖         𝑖 = {1,… ,𝑁𝑟} (6) 

 

𝛼𝑠0,𝑖𝑗(𝑡) = 𝑞𝑖(𝑡) ∙ ∑ (𝐴𝑟,𝑖𝑘 ∙ 𝑠𝑖𝑛(𝜔𝑘 + 𝜑𝑠,𝑖𝑗𝑘))
𝑛
𝑘=1     𝑖 = {1,… ,𝑁𝑟}     𝑗 = {1,… ,𝑁𝑠} (7) 

 

Subsequently, the synthetic ground motions generated based on a real accelerogram are all scaled with 

the same scaling factor (ci), which minimizes the sum of the squares of the differences between the 

acceleration response spectrum for 5 % damping of the real record (𝑆𝑎,𝑟,𝑖(𝑓)) and the median spectrum 

for 5 % damping of the scaled synthetic ground motions (c ∙ 𝑆𝑎,𝑠0,𝑖(𝑓)) (Equation 8). The adjusted 

synthetic ground motions (𝛼𝑠,𝑖𝑗(𝑡)) are given by Equation 9. As an example, Figure 1b shows real record 

No. 1 and one of its spectrally equivalent synthetic accelerograms. 
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𝑐𝑖 = 𝑎𝑟𝑔 𝑚𝑖𝑛
(𝑐)

( ∑  ( 𝑆𝑎,𝑟,𝑖(𝑓) − 𝑐 ∙ 𝑆𝑎,𝑠0,𝑖(𝑓))
2 

𝑓=25 𝐻𝑧
𝑓=0.2 𝐻𝑧 )      𝑖 = {1,… ,𝑁𝑟} (8) 

 

𝛼𝑠,𝑖𝑗(𝑡) = 𝑐𝑖 ∙ 𝑞𝑖(𝑡) ∙ ∑ (𝐴𝑟,𝑖𝑘 ∙ 𝑠𝑖𝑛(𝜔𝑘 + 𝜑𝑠,𝑖𝑗𝑘))
𝑛
𝑘=1      𝑖 = {1,… ,𝑁𝑟}      𝑗 = {1,… ,𝑁𝑠} (9) 

 

Based on 𝑁𝑟 = 96 real acceleration records, which are selected from the European Strong Motion 

Database (Ambraseys et al. 2002, 2004) for 5.5 < M < 6.5 and R < 20 km, a total of 𝑁𝑟 × 𝑁𝑠 = 48000 

“spectrally equivalent” synthetic accelerograms are generated (𝑁𝑠 = 500 based on every real 

acceleration record) in order to be used in the analytical seismic fragility curve estimation. 

 

a) b)  

 
Figure 1. a) Modulation function b) synthetic accelerogram and its original acceleration record 

 

 
 

Figure 2. Acceleration response spectra for 5 % damping of the adjusted synthetic ground motions and their 

original ground motion 

 

Figure 3a shows the 15th, 50th and 85th percentiles of the acceleration response spectra for 5 % damping 

of the database of real accelerograms, and the corresponding percentiles of the spectra based on the 

synthetic ground motions. The distribution of the spectral values of the synthetic ground motions 

matches well that of the real accelerograms and the ground motion variability of the synthetics 

reproduces the variability in the original ground motion database. We observe in Figure 3b that the 

percentiles of the acceleration response spectra for 2 % damping of the synthetic ground motions also 

match well the percentiles of the response spectra of the real accelerograms. Therefore, we consider that 

adjustment technique is quasi-independent of the damping value in the computation of the response 

spectra. 
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a) b)  

 

Figure 3. Percentiles of the acceleration response spectra for a) 5 % and b) 2 % damping of the 

synthetic accelerograms and the ground motions in the original database 

 

 

3. FRAGILITY CURVE ESTIMATION 

 

3.1 Structural model  

 

For the illustrative application of this framework and for verification of the PMA-based methodology 

an inelastic single nonlinear degree of freedom structure is employed. Its frequency is 5 Hz, it has a 

damping ratio of 5 % and yield displacement of 3.310-3 m. Its post-yield stiffness, defining kinematic 

hardening, is equal to the 20 % of its elastic stiffness (Figure 4a). Figure 4b shows the maximum 

response of the inelastic oscillator under excitation with the real accelerograms and the generated 

synthetic ground motions. We observe that, in this case, the responses under the synthetic ground 

motions are spread over an area between and around the responses computed with the real records. These 

data is used in the different approaches developed here for estimating the non-parametric fragility curve. 

 

a) b)  

 
Figure 4. a) Backbone curve of the inelastic oscillator b) Maximum oscillator displacement (Δumax) observations 

as a function of the PGA 

 

 

3.2 Empirical non-parametric fragility curves based on IM clustering 

 

The class of non-parametric fragility curves considered in this framework is based on clustering of the 

Intensity Measure observations. In the illustrative example herein, the maximum oscillator displacement 

is used as the EDP and the PGA is conscientiously used as the IM for simplicity, despite acknowledging 

that other IMs may be more efficient (Kostinakis et al. 2016). The total Intensity Measure (IM) 

observations of all real and synthetic ground motions are classified to a number of clusters with k-means 

clustering. Here, the IM observations are grouped into Nc = 20 clusters and the effect of IM discretization 

is out of the scope of this article. Subsequently, the point probabilities are classically computed at the 



6 

 

 

IM cluster centroids (Cl, l = {1,...,Nc}) as the ratio of the number of exceedances of the damage state 

threshold, which are observed in the analyses corresponding to the IMs in a cluster, to the number of 

total observations in the cluster. In this case, the damage state threshold is equal to the yield displacement 

(3.310-3 m). For brevity, we will be referring to damage state exceedance as failure. Figure 5 shows the 

non-parametric fragility curve computed in this case study with 48096 seismic response analyses using 

all available recorded and synthetic accelerograms, which is used throughout the article as the reference 

fragility curve. 

 

3.3 Formulation of non-parametric fragility curves based on IM clustering 

 

The proposed PMA methodology in this paper for optimized estimation of non-parametric fragility 

curves is based on Equation 11. This equation expresses the discrete fragility curve 𝑃(𝑓|𝐶𝑙), which is 

defined at Nc cluster centroids (Cl), by means of the law of total probability. 

 

𝑃(𝑓|𝐶𝑙) =
∑ (𝑃(𝑓|𝐶𝑙 ∩ 𝑆𝑖)∙𝑃(𝐶𝑙|𝑆𝑖)∙𝑃(𝑆𝑖))
𝑁𝑟
𝑖=1

∑ (𝑃(𝐶𝑙|𝑆𝑖)∙𝑃(𝑆𝑖))
𝑁𝑟
𝑖=1

 (11) 

 

The conditional probability P(f|Cl∩Si) corresponds to the probability of exceeding the damage state 

threshold at cluster centroid Cl under excitation with ground motions originating from random process 

Si. This is practically the fragility curve estimated with the ground motions originating from process Si. 

The conditional probability P(Cl|Si) is the probability that the IM observations based on the ground 

motions belonging to process 𝑆𝑖, to be sorted in cluster Cl. As an example, Figures 6a and 6b show 

P(f|Cl∩S23) and P(Cl|S23), respectively, resulting from an empirical computation. Finally, the probability 

𝑃(𝑆𝑖) equals the fraction of the number of ground motions used, which belong to random process 𝑆𝑖, to 

the total number of ground motions used to estimate the fragility curve. If we generate an equal number 

of synthetic ground motions for every one of Nr real accelerograms, and all available ground motions 

are used in the computation, then P(Si) = 1/Nr. This is the case in the validation of the Equation 11 which 

is presented in Figure 5. We use 96x500 synthetic ground motions generated by the random processes 

𝑆𝑖 in addition to the 96 ground motions in the original database. Figure 5 shows that the fragility curve 

defined by Equation 11 coincides with the empirical fragility curve used as reference. 

 

3.4 Lognormal curve adjusted to point probabilities 

 

In order to observe potential differences between lognormal fragility curves and the non-parametric 

curves estimated with the different approaches herein, a Maximum Likelihood Estimation of lognormal 

curves is employed. The MLE of the lognormal curve uses the point probabilities constituting the un-

optimized non-parametric fragility curve and the corresponding EDP observations. The MLE is 

performed with Equations 12-15 and the estimated lognormal curve is given by Equation 16. 

 

𝑃(𝑛𝑙 , 𝑟𝑙 , 𝐶𝑙) =
𝑛𝑙!

𝑟𝑙!(𝑛𝑙−𝑟𝑙)!
∙ 𝑃(𝑓|𝐶𝑙)

𝑟𝑙 ∙ (1 − 𝑃(𝑓|𝐶𝑙))
𝑛𝑙−𝑟𝑙 (12) 

 

𝐿 = ∏ 𝑃(𝑛𝑙 , 𝑟𝑙 , 𝐶𝑙)
𝑁𝑐
𝑙=1  (13) 

 

ln (𝐿) = ∑ [𝑙𝑛 (
𝑛𝑙!

𝑟𝑙!(𝑛𝑙−𝑟𝑙)!
) + 𝑟𝑙 ∙ 𝑙𝑛𝛷 (

𝑙𝑛(𝐶𝑙)−𝑙𝑛(A)

𝛽
) + (𝑛𝑙 − 𝑟𝑙) ∙ 𝑙𝑛 (1 − 𝛷 (

𝑙𝑛(𝐶𝑙)−𝑙𝑛(A)

𝛽
))]

𝑁𝑐
𝑙=1  (14) 

 

{�̅�, �̅�} = 𝑎𝑟𝑔 𝑚𝑎𝑥
(𝐴,𝛽)

 (𝑙𝑛 (𝐿)) (15) 

 

𝑃(𝑓|𝐼𝑀) = 𝛷 (
𝑙𝑛𝐼𝑀−𝑙𝑛�̅�

�̅�
) (16) 

 

Where nl the number of EDP observations corresponding to the IM observations in the l-th cluster, rl the 

number of EDP observations, which correspond to the IM observations in the l-th cluster, that exceed 
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the damage state threshold, Cl the IM centroid of the l-th cluster, P(f|Cl) the empirical fraction of EDP 

observations exceeding the damage state threshold in the l-th cluster, P(nl,rl,Cl) the binomial 

distribution, L the likelihood function, Φ the normal cumulative distribution function, A and β the 

median and the dispersion of the lognormal distribution, respectively, �̅� and �̅� their estimations, P(f|IM) 

the probability of exceeding the damage state threshold given the IM. The difference with the curve 

fitting in Baker (2015) is that the failure fractions at the cluster IM centroids are used instead of the 

failure fractions at the IMs of EPD stripes. Figure 5 includes a lognormal curve computed with this 

approach using the point probabilities, which constitute the reference fragility curve, and the 

corresponding observations. 

 

 
 

Figure 5. Reference non-parametric fragility curve, lognormal fragility curve and non-parametric curve 

according to Equation 11 

 

a) b)  

 
Figure 6. a) Empirical fragility curve corresponding to the process S23 b) Empirical conditional probability 

𝑃(𝐶𝑙|𝑆23) based on random process S23 

 

 

4. OPTIMIZATION WITH PARAMETRIC MODEL AVERAGING 

 

In order to illustrate the optimization of the non-parametric clustering fragility curve estimation we are 

employing three approaches, which we will be calling un-optimized, optimized (i.e. the PMA-based 

approach) and the reference; the latter was already described in section 3.2 and used in the validation of 

Equation 11. In the un-optimized approach, firstly, the analyst selects the number of seismic response 

analyses based on which the fragility curve will be estimated. Subsequently, an equal number of IM 

observations are selected from every cluster, equal to the number of total analyses divided by the number 

of clusters. If there are less IM observations in some clusters than required, we select those available 

and we select the rest by selecting an even number of observations from the rest clusters and so on. In 

the un-optimized approach, as in the reference, the probability of exceeding the damage state threshold 

is estimated empirically at the l-th cluster centroid by the ratio of the number of failures observed to the 

total number of observations in the cluster. The optimized approach, i.e. the PMA-based approach which 
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employs Equation 11, follows the procedure of the un-optimized approach with three modifications. 

First, the conditional probability P(Cl|Si) is not estimated with the selected IM observations, but with a 

very large number of observations in order to obtain the most precise estimation. Here, each P(Cl|Si) 

distribution is empirically estimated with 501 IM observations; 500 observations corresponding to the 

synthetics and 1 to the original record. Practically, this means that the estimation of P(Cl|Si) in the 

optimized approach and in the reference are identical. It is worth noting that the estimation of P(Cl|Si) 

does not require any seismic response analyses, it only requires IM observations based on synthetic 

ground motions, which have a small computational cost. Second, IM observations are selected in the 

optimized computation, only if they are sorted in a cluster k where P(Cl|Si) has its maximum (Equation 

17). The third and most important modification concerns the models used in the PMA approach. Instead 

of the empirical conditional probability for P(f|Cl∩Si), the optimized approach employs the parametric 

models in Equation 18. 

 

𝑘 = 𝑎𝑟𝑔 𝑚𝑎𝑥 
(𝑙)

𝑃(𝐶𝑙|𝑆𝑖)        𝑖 = {1,… , 𝑁𝑟 = 96} (17) 

 

𝑃(𝑓|𝐶𝑙 ∩ 𝑆𝑖) = 𝑃(𝑓|𝐶𝑘 ∩ 𝑆𝑖) = 𝑃𝑓𝑖         𝑖 = {1,… ,𝑁𝑟 = 96}      𝑙 ≠ 𝑘 ≤ 𝑁𝑐 = 20 (18) 

 

The models in Equation 18 are single-parameter models with a constant probability of failure (𝑃𝑓𝑖) for 

all cluster IM centroids. This constant probability is taken equal to the empirical estimation of the 

probability of failure at the cluster centroid where 𝑃(𝐶𝑙|𝑆𝑖) has its maximum (Equation 17). As an 

example, Figure 7 (top left) shows the empirical conditional probability 𝑃(𝑓|𝐶𝑘 ∩ 𝑆23) estimated with 

the observations corresponding to the ground motions based on real accelerogram 23. Moreover Figure 

7 (top right) shows the corresponding model used in the optimized approach, which assumes a constant 

probability, which is estimated at the cluster IM centroid for which 𝑃(𝐶𝑙|𝑆23) is maximized (Figure 7 

bottom). 

 

 
 
Figure 7. (top left) Empirical fragility curve based on the ground motions originating from real accelerogram 23 

(top right) parametric model of constant probability of damage state threshold exceedance (bottom) conditional 

probability P(Cl|S23) 
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5. APPLICATION OF THE METHODOLOGY 

 

In order to illustrate the methodology, we use the same structural model and the same real and synthetic 

ground motions used in the computation of the reference non-parametric curve in Figure 5. Four 

computations are performed with the optimized approach and a separate set of four computations with 

the un-optimized approach. Each set of four computations uses 200, 500, 2000 and 10,000 seismic 

response analyses with a different set of selected ground motions every time. In addition to the optimized 

and un-optimized non-parametric curves, four lognormal fragility curves are adjusted with the described 

MLE to the un-optimized non-parametric curves. The estimated seismic fragility curves are shown in 

Figure 8. Considering the reference non-parametric fragility curve as the most precise estimation, we 

observe that the estimation with the optimized procedure is generally better than the estimation with the 

un-optimized. Moreover, as the number of seismic response analyses increases, the optimized curve 

converges well with the reference curve, which means that no bias is introduced due to the assumptions 

in this case. As far as the MLE lognormal curve is concerned, we observe that estimates very efficiently 

the damage state exceedance probability in the case of 200 seismic response analyses. Differences 

between the lognormal curve and the reference are still observed for 10,000 analyses and in this case 

the non-parametric curves are considered more precise. Figure 9 shows the 95 % confidence intervals 

(CI), which are computed with 500 non-parametric bootstrap samples (Iervolino, 2017), in the case of 

the optimized and the un-optimized approach. The 95 % CI of the optimized non-parametric curve is 

smaller than the 95 % CI of the non-parametric un-optimized curve in all cases in Figure 9. 

 

a) b)  

c) d)  

 
Figure 8. Reference curve estimated with 48096 analyses and optimized and un-optimized non-parametric 

fragility curves of the inelastic oscillator for a Δumax threshold of 3.310-3 m estimated with a) 200 b) 500 c) 2,000 

and d) 10,000 analyses 
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a) b)  

c) d)  

 
Figure 9. Confidence intervals of the non-parametric fragility curves of the inelastic oscillator for a Δumax 

threshold of 3.310-3 m estimated with a) 200 b) 500 c) 2,000 and d) 10,000 analyses 

 

 

6. CONCLUSION 

 

Here, we present a methodology that optimizes the computation of non-parametric fragility curves based 

on synthetic accelerograms, which reproduce the ground motion variability observed in a database of 

real acceleration records. The methodology relies on the synthetic signals being random realizations of 

a series of stochastic processes, each of which uses an accelerogram from the original database. Based 

on the synthetic ground motions from each process, a parametric fragility curve, i.e. a parametric model, 

is estimated. With all estimated models, a non-parametric fragility curve is estimated based on 

parametric model averaging (PMA), which computes the weighted average of the parametric models 

according to the law of total probability. 

 

A large number of synthetic accelerograms is generated with a “simple” generator, which is based on a 

database of real acceleration records, and is used in order estimate the reference fragility curve. The 

generator produces synthetic ground motions with acceleration response spectra, whose 15th, 50th and 

85th percentiles match well the corresponding percentiles of the spectral values of the ground motions 

in the original database. In the context of estimation of a reference fragility curve, all real and synthetic 

ground motions are used as excitations of an inelastic single degree of freedom structure in order to 

obtain EDP observations as a function of the IM. The entirety of the IM observations of the real and 

synthetic ground motions is classified to clusters with k-means clustering. The number of clusters is 

selected based on engineering judgement and the effect of the number of clusters is not studied here and 

may be a factor limiting the applicability of this methodology in other cases. Subsequently, the 

probability of failure is estimated empirically at the cluster IM centroids using the EDP observations 

corresponding to the IM observations in each cluster. The result is the non-parametric fragility curve, 

which is used as reference as it is considered the best estimation possible based on the IM clustering 

approach and the data used. In the un-optimized approach, the same procedure is followed, but instead 

of using all data, an as constant as possible number of IM observations per cluster is selected so that the 
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total number of analyses is in accordance with the allocated computational time. 

 

The PMA-based optimized approach builds upon the un-optimized estimation by introducing an 

additional IM observation selection criterion. The IM observations in every cluster eligible for selection 

are those found in clusters with maximum probability of observation given the process, which generated 

the corresponding synthetic ground motions. With the EDP observations corresponding to the selected 

IM observations, the probability of failure at the IM cluster centroids is empirically estimated and these 

probabilities of failure are used to define the parametric fragility curve related to each random process. 

These parametric models are then averaged with the probabilities of occurrence of each random process 

in the clusters which are estimated with a very large number of synthetic ground motions, with 

practically no computational cost, since it requires no seismic response analyses. Finally, the uncertainty 

of the estimated non-parametric curve is estimated with non-parametric bootstrap resampling. The bias 

of the optimized fragility curve with respect to the reference non-parametric curve is smaller than the 

bias of the MLE-based lognormal curve in the studied cases for 500 or more seismic response analyses. 

Moreover, the 95 % confidence interval of the optimized non-parametric curve is reduced with respect 

to the confidence interval of a non-optimized non-parametric curve for the same number of seismic 

response analyses in all cases in the study. Therefore, the developed class of optimized non-parametric 

fragility curves is proposed as an alternative to parametric lognormal curves and un-optimized curves 

in the case of mid-range computational time cost (a few hundred to a few thousand seismic response 

analyses). In conclusion, the developed methodology is an efficient and useful procedure for fragility 

curve estimation, when precision is of essence as in the case of critical structures and non-structural 

components. 
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