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ABSTRACT 
 

In this work, the behavior of the elastomeric material, used in the manufacture of isolators, was characterized.  

Data obtained from experimental uniaxial compression and tension tests were used to determine the parameters 

of the different hyperelastic models that are available in several commercial software of Finite Element analysis.  

Simulation of the test is compared with the experimental data. The constitutive models that best represent the 

behavior of the hyperelastic materials, were used in order to simulate the behavior of the isolator subjected to 

lateral and cyclic load; a good agreement is observed between numerical and experimental results. It is found 

that the Polynomial hyperelastic model, for the rubber used, presents a better approximation regarding  the 

behavior of the elastomeric isolator.  
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1. INTRODUCTION  

 

Earthquakes are natural disasters that induce forces and deformations causing damages in structures, 

which in turn produce human and material losses. One option to improve the behavior of structures to 

protect them is to separate the movement of structure from ground introducing flexible elements 

between the structure and the foundation; these elements are defined as seismic isolators. 

One of the most used seismic isolation system consists of alternating layers of steel and rubber joined 

through vulcanization. One type is the laminated-Rubber Bearings (RB) which takes advantage of the 

properties of the elastomer that can undergo large deformations and then return to their initial state 

when is discharged. Elastomer materials, like rubber, neoprene or another material, can experience 

large elastic strains and deformations with small volume change; these properties are named as 

hyperelasticity (Kumar and Rao, 2016).  

The use of elastomeric materials has increased the interest to find models that permit to predict their 

behavior while subjected to seismic load. Several hyperelastic constitutive models have been 

developed and incorporated in most of the commercial softwares of Finite Element Analysis (FEA). 

Data required for each model are obtained from experimental tests; the selection of the model depends 

on the available data to determine the parameters that characterize the mechanical behavior of this type 

of material (Aidy et al. 2010; Ramírez Gallo, 2008 ). 

In this paper, simple tension and uniaxial compression experimental tests were performed in order to 

calculate the parameters of different hyperelastic models. Then, the behavior of RB for horizontal 

seismic loading is simulated. Experimental test validates the best hyperelastic models used in 

numerical simulation. 

                                                      

 
1
Master Student, Universidad Autónoma de Sinaloa, Culiacán, México, edgarenp@hotmail.com  

2
Professor, Universidad Autónoma de Sinaloa, Culiacán, Méxicoluz@uas.edu.mx 

3
Professor, Universidad Autónoma de Sinaloa, Culiacán, México, reyes@uas.edu.mx 

4
Research Assistant, Instituto de Ingeniería, Universidad Nacional Autónoma de México, México, 

mtorresp@iingen.unam.mx  
5
Professor, Universidad Autónoma de Sinaloa, Culiacán, México, eden@uas.edu.mx  

mailto:edgarenp@hotmail.com
mailto:luz@uas.edu.mx
mailto:reyes@uas.edu.mx
mailto:mtorresp@iingen.unam.mx
mailto:eden@uas.edu.mx


2 

 

 

2. EXPERIMENTAL TESTS OF THE ELASTOMERIC MATERIAL 

 

Hyperelasticity can be expressed in terms of energy deformation per unit volume (Estrada, et al. 

2013). This approach is based on most of the different mathematical models. These equations are 

presented in theTable 1. 

 
Table 1. Mathematical equation by different hyperelastic models. 
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where W is the strain energy density function, 
1I and 

2I  are stretch invariants and depend of two 

principal strains; respectively, c  ,   ,    y  are material constants for each model.  

 

2.1 Tension strain state 

 

The geometry of the specimen, as well as the conditions and stresses of the test were taken from the 

ASTM D638-14 standard referring to tensile tests of plastics. Figure 1 shows the geometry of the bone 

specimen.  

 

 
Figure 1. Dimensions for tension test 

 

 

The stress response simulation was performed by using FEA for several specified hyperelastic 

constitutive models. The parameters used in the different models are Young's Module E = 2,552 MPa 

and Poisson's ratio = 0.50. Figure 2 compares the experimental results versus analytical models.  
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Figure 2. Experiment vs analytic results in tension   

 

 

Figure 3 compares experimental test specimen vs. FEM simulation in tension obtained with 

commercial software.  

 

 
 

Figure 3. Test specimen before and after in experimental test and with ANSYS simulation 

 

The values of the constants, associated to each model, were obtained by fitting the analytical vs. 

experimental data using the method of least square. Table 2 shows the values of the constants 

corresponding to each model analyzed. The subscripts are the same as those requested by the ANSYS 

software.  

 
Table 2. Values obtained of the constants by setting experimental tension test vs FEA. 

 

Hyperelastic 

models 

Number of  

parameters 

Value of the constants 

1.- Mooney-Rivlin 3 C10=5, C01=0.005, C11=0.06, 

d=20 

2.- Polynomial 2 C10=1.3, C01=1.3, d=0.04 

3.- Yeoh 2 C1=3.5, C2=0.25, d=0.0005 

4.- Ogden 2  µ1=5, a1=1, µ2=1, a2=4 

d1=0.005 d2=0 
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2.2 Uniaxial compression strain state 

 

For the compression test the loading and dimensions of the test piece were based on the ASTM D695-

15 standard. Figure 4 shows the experimental test and simulation using FEA. Figure 5 shows the 

comparison between the experimental vs. compression simulation test.  

 

 

  
 

Figure 4. Comparison between experimental compression test and simulation by means of FEA 

 

 
 

Figure 5. Compression testing vs simulation. 

 

 

In compression test, Yeoh and Polynomial model presents good fit with the experimental curve. Also, 

both models presented good adjustment in the tension test; those models will be used to obtain the 

behavior of the seismic isolator. Ogden model is not presented in the Figure 4 because it is not 

possible to obtain a good fitting to the experimental curve with the parameters calculated for this 

model; also this model was omitted in the simulation of the elastomeric isolators and the Money Rivlin 

model since it was the one with the greatest error in the fitting with respect to the experimental curve 

in compression. 
 

Table 3 shows the values of constants obtained by fitting the analytical vs. experimental data. 
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Table 3.Values obtained of the constants by fittering experimental compression test vs. simulation. 

 

Hyperelastic 

models 

Number of 

parameters 

Value of the constants 

1.- Mooney-Rivlin 2 C10=25, C01=25,  d=0.0005 

2.- Polinomial 2 C10=1.4, C01=3.7, d=20 

3.- Yeoh 2 C1=20, C2=20, d=0.0005 

 

As seen in Table 2 and Table 3, the values of the parameters obtained by tension and compression are 

different for all the models. The question is, what model should be used to simulate the behavior of the 

seismic isolator, and what values should be given to the constants? Should those obtained from tension 

or compression test? The most accurate representation of the hyperelastic properties will be obtained 

from the parameters of each model determined through the combination of the mechanical tests in 

multiple states (tension, compression, shear, etc). However, Iwabe et al. (2000) studied the effect of 

tension in rubber because tensile forces affect more the performance of the RB. In order to verify this 

hypothesis, the values of the constants are calculated by fittering the behavior of the isolators, with the 

two constitutive hyperelastic models, versus experimental test for cyclic load. 

 

 

3. COMPARISON OF THE SIMULATION VS. EXPERIMENTAL TEST 

 

To verify that the behavior of the parameters in Yeoh and Polynomial models, for hyperelactic 

material, experimental cyclic load tests for three isolations were realized. Table 4 shows the geometric 

properties of the RB isolator.  

 

 

 
Table 4. Captions of tables; first letter capitalized, period at end, and centrally aligned. 

 

Number of 

specimen 

Diameter   

(mm) 

Height of each 

specimen  

(in) 

Number of 

plates of steel  

Thickness  

(mm) 

Thickness of 

neoprene 

(mm) 

Isolator 1  150 1.5  3 6 10.05 

Isolator 2 150 2.5 4 6 13.17 

isolator 3 150 3.5  5 6 14.73 

 

 

Steel used in the isolator was A36 with E=2x10
6
 Kg/cm

2
.  

Figure 6, 7 and 8 shows the comparison between cyclic loading versus simulation using FEA for the 

three isolators listed in Table 4. 

Table 5 shows the value of the constants obtained by fitting with the experimental cyclic loading  

 

 
Table 5. Values obtained of the constants by setting experimental cyclic loading vs simulation. 

 

Hyperelastic 

models 

Number of  

parameters 

Value of the constants 

2.- Polynomial 2 C10=1.3, C01=1.3, d=0.04 

3.- Yeoh 2 C1=5, C2=0.2, d=20 
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Figure 6. Cyclic loading isolator 1 

 

 
Figure 7. Cyclic loading isolator 2 

 
 

Figure 8. Cyclic loading isolator 3 
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The values of the constants obtained from simple tension (Table 4), for the Polynomia model, gives a 

good approximation with the constants obtained from the RB isolation(Table 5) to represent the 

horizontal displacement and stiffness of the RB isolator. However, in the case of energy, the Yeoh 

model show a better approach than the Polynomial model but the value of the constants obtained from 

the tension test are different from those obtained in the cyclic load (Table5) 

 

An approach to the actual dynamic behavior of the isolator depends to a large extent on the correct 

choice of the model, this is due to the accuracy of each model, the load conditions and the 

characterization of the material by means of mechanical tests. When the information of all the 

deformation states is not available, the uniaxial tension test is used (Ramirez Gallo, 2008), and it is 

implemented in the different models in order to  fitting with the hysteretic cycles. 

 

 

4.  CONCLUSIONS 

 

In this paper, a study of the most common hyperelastic materials was performed. The values of the 

associated parameters were obtained by correlating analytical and experimental tension and 

compression tests. These parameters are used to simulate the behavior of the elastomeric material in 

the seismic isolator. Values of the parameters in the Polynomial model, obtained from tension tests, 

present a good approximation in the simulation of the behavior of the laminated-Rubber Bearings 

isolator. Results were verified by the experimental tests. 
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