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ABSTRACT

Seismic performance of masonry buildings is usualigessed at local and global levels, separatelgm&
safety against local collapse mechanisms is evaduaia macroblock models and linear/nonlinear kiaten
analysis methods. Conversely, safety against inepfailure modes is assessed through nonlinedc/dtatamic
analysis of global macroelement models. Nonethgkbgsin-plane seismic capacity of masonry walls ba
strongly influenced by simultaneous response teobylane actions. Although this issue has beemrnty
investigated in a few experimental programs anderical studies, the level of knowledge is stilliiea.

In this study, the authors present a novel fibesebacapacity model that allows performance-basenge
design/assessment of unreinforced masonry piergeald to combined in-plane and out-of-plane logdin
Based on a nonlinear incremental analysis proceduwenent—curvature diagrams are derived at diftdeels
of axial load and 3D flexural strength domains developed at five performance limit states. Nordine
sectional capacity under biaxial bending and dweiatling is directly governed by the macroscopicstitutive
model assigned to masonry and sectional shapey#iaalesults show a strong interaction between ibgnd
moments related to in-plane and out-of-plane logdivhich changes with the axial load level. Simetifbiaxial
interaction models are derived through nonlinegression analysis for engineering practice. Ihisvwn that the
axial load level and ratio between in-plane and-afyilane actions has an impact on sectional dtyctit
different limit states. The capacity model allowsisidering the softened response of masonry sectindsr
increasing axial load levels, which also inducesdction in ultimate axial load.

Keywords: Masonry walls; Combined in-plane and ofiplane loading; Analytical capacity model;
Performance limit states; Biaxial bending—axial ldateraction models

1. INTRODUCTION

Nonlinear behavior of masonry walls under in-plgi®) and out-of-plane (OOP) actions has been
usually investigated through different capacity elsdand analysis methods. Nevertheless, destructive
earthquakes have shown that nonlinear response asmry buildings can be affected by the
interaction between in-plane and out-of-plane dam@gg. Parisi and Augenti 2013a). Some recent
experimental campaigns and numerical investigatibage further confirmed a strong IP-OOP
interaction. Najafgholipour et al. (2013) conductederies of tests on brick masonry panels sulijecte
in-plane shear loading and out-of-plane bendingthBbe experimental results and the numerical
model calibrated by those researchers have higbligthat the longitudinal slenderness of walls
strongly influences the interaction level. Thedativas characterized up to the peak strength. Three
slenderness levels were investigated and as maeyadation curves were obtained. It was thus
obtained an interaction model that provides theimniimn envelope of the abovementioned three
curves.

Agnihotri et al. (2013) further investigated the@®P interaction from a numerical point of view. A
nonlinear finite element (FE) model of unreinforamésonry (URM) walls with different levels of
longitudinal and transverse slenderness was des@lofhe interaction was evaluated by considering
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cyclic in-plane drifts and monotonically increasiogt-of-plane pressures. It was then assessed the
out-of-plane capacity reduction due to the in-pldamage of the wall.

Najafgholipour et al. (2014) carried out a numdrisansitivity study based on an anisotropic
macromodel, demonstrating that the IP-OOP intevactiepends not only on the longitudinal
slenderness of the wall but also on the elasticiagldstic properties of the masonry in tensiorsdgha
on numerical results, an empirical capacity modas wbtained for predicting the resistance in one
direction from the load in the orthogonal direction

Dolatshahi et al. (2015) applied the macromodelewnnique to different masonry panels, obtaining
IP-OOP interaction curves and comparing resulth thibse derived from FE analysis.

Due to the importance of the problem, the authdrshis paper extended a theoretical research
program that initially focused on assessing thengfth and deformation capacities of URM cross
sections subjected to uniaxial bending and axiatl IParisi and Augenti 2013b, Parisi et al. 2016).
This mechanical behavior has been investigated idemsg a wide variety of macroscopic
constitutive models available in literature for ioy masonry. Parisi and Augenti (2013b) quardifie
the influence of the strength degradation of masam bending moment—axial load interaction
domains, considering their variation with strainctlity that was taken as third dimension of the
sectional capacity model. More recently, Parisblet(2016) identified the constitutive models that
provide the best estimate of the moment—curvatataor of rectangular URM cross sections made
of clay brick masonry, calcarenite stone masonrpre of them without distinction. Therefore, the
aim of this paper is to evaluate the effects ofO®P interaction along the principal axes of
rectangular cross sections, both in terms of streagd deformation capacity.

2. METHODOLOGY

This analytical study focuses on the flexural resgoof URM walls to in-plane and out-of-plane point
lateral loads that statically simulate the inefoeces transmitted by floor diaphragms in buildings
Particularly in the case of existing URM building®t designed for earthquake resistance, the
magnitude of out-of-plane seismic actions disteloutoy flexible floors (made of, for instance,
timber/steel joist systems without rigid slab) dansignificantly higher than that of inertia pressu
associated with the selfweight of walls. This me#ra distributed out-of-plane pressures as those
considered in previous studies (e.g. Agnihotrile@13) were replaced by lateral forces actindagn

of the wall. Assuming nonlinear constitutive modefsURM assemblages selected by Parisi et al.

(2016) and that plane sections remain plane dérurfal deformation, this study consisted of thepst

described below.

1. Derivation of moment—curvature diagrams correspogdo each selected constitutive model,
given the axial load on the section. Each diagraas wbtained by changing the an§léetween
the resulting moment vectt = [M,, M,] and the x-axis of the section.

2. Definition of five limit states in terms of tensit®@mpressive strength limit at material level or
resisting bending moment at sectional level.

3. Identification of the limit states on each momentvature diagram and deriving the
correspondindN—M,—My three-dimensional (3D) interaction domains.

4. Derivation of M,—My two-dimensional (2D) interaction domains by sedtig 3D domains at
prescribed levels of axial load.

5. Regression analysis d¥l,—M, data corresponding to each group of constitutivedets and
derivation of a simplified capacity model that al predicting the peak resisting moment in a
principal direction of cross section given the &load and bending moment in the perpendicular
direction.

The URM cross section was assumed to have lehgémd thicknessT. The cross section was

discretized in 900 fibers, which is an optimal n@mbvaluated through a sensitivity analysis. Fbr al

the selected constitutive models, the tensile heha¥ masonry was assumed to be characterized by a

linear elastic branch up to peak tensile strengthalinear softening branch until the ultimatesttn

strain is reached. The Young’'s moduli in tensiod eampression were assumed to be the same.



3. NONLINEAR MOMENT-CURVATURE ANALYSIS
3.1 Computational procedure

An iterative incremental procedure of sectionallgsia was developed in MATLAB to perform
numerical integration of constitutive equationsstress—strain data sets. Given the axial load and a
couple of in-plane and out-of-plane lateral loadstlee URM wall (i.e.Fip andFqop in Figure 1), the
relationship between bending momeMs and My of the most stressed section is known. In the
nonlinear analysis procedure, the authors paraimetethe ratiov/My through the biaxial bending
angle

9 = tan¥(M,/M,). The distributions of stresses and strains okerdross section were obtained by
assuming two parameters, i.e. bending curvapuendd, as well as the axial load (Figure 2). The
curvature components. and¢y along the x-axis and y-axis of cross section vdefened as follows:
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Both mechanical and geometrical nonlinearitiestaken into account, the latter being related to the
fact that the effective cross section depends emélative magnitude of lateral loads.

Figure 2. Relationship between moment vetigbiaxial bending angl® and curvature
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Figure 3 shows a flowchart in which the incrementhtive analysis is summarized.
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Figure 3. Flowchart of the incremental iterativeqedure



The moment—curvature diagram of the URM cross @edsi derived through the following main steps
wherei andk denote the curvature increment and iteration wid#ch increment, respectively:

1. Discretize the URM cross section into a numtef fibers with sectional are& =LT/n.

2. Assign a constitutive model (in the form of eitrsress—strain equations or data sets) to
masonry in tension and compression.

3. Set the axial load levéN = N and biaxial bending angie=19".

4. Set the bending curvatuge= ¢i.

5. Assume two trials of maximum axial straigf_ . and & in order to search the actual

ax,1j max, 2j

value emax corresponding to théth level of bending curvaturee’:m1i is set equal to the
maximum axial strain that would occur if the sesibbehavior is linear, whereas the second
strain trial is defined as,, , =0.5¢}.,,. The values assigned tg),, and &, , have
significant influence on the convergence rate efatyorithm.

6. Compute the sectional distribution of axial straia'(s<, y)lk corresponding to each maximum
strain trial, given the assumption of plane secéfiar flexural deformation.

7. Compute the sectional distribution of axial stressl{s(x, y)lk} corresponding to each

maximum strain trial.
8. Calculate the axial load®lix and Nzx through numerical integration of axial stresses

corresponding t&,,,.. and &y, , -
9. Check that the following inequality is met:
N,, —N”

ND

<tol, (3)

and & until

max,2j

If inequality 3 is not satisfied, repeat steps 6@ changing &£

max,1j
convergence is reached. Otherwise, the distributibaxial strains corresponding tef,, ,;
allows sectional balance with the given axial load.

10. Set the actual maximum straiy,,; = £

max, 3, *
11. Check that the maximum axial strain does not exdbedultimate strain of masonry in
compression, that is:

Emaxj = gu (4)

12. If inequality 4 is not met, repeat steps 6—11ctilhvergence. Otherwise, compressive failure is
not reached.
13. Compute the bending momens; andMy,; through numerical integration of axial stresses.
14. Assume a curvature incremelp; > 0, setpi+1 = ¢i + Ag; and repeat steps 5—13 until ultimate
strain of masonry is achieved.
This incremental iterative procedure was implemgnsecording to the secant method where
numerical tolerance on axial load was assumed tolpe 10”. In detail, the secant method was used

when changing,, ., and €, ,. in subsequent iterations.

3.2 Moment—curvature diagrams and limit states

The procedure described above allowed the momemniaituwe diagrams to be obtained under varying
angle 8 and axial loadN. Figure 4 shows dimensionless moment—curvaturgraias in which
bending momen# is normalized to a geometric parametetimes the maximum axial load capacity
Nm and the bending curvatueis normalized tdH. In case of biaxial bendingd was defined as a
nonlinear transformation d¥l,, My, L and T, according to moment vector decomposition alorg th
principal axes of the cross section. Each momemtature diagram is associated with a given axial
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load normalized to the maximum axial load capadig,N/Nm. Numerical integration was carried out
by assuming the constitutive model proposed by Atiggnd Parisi (2010) for masonry subjected to
compression perpendicular to bed joints. Momentrature diagrams were derived for three values of

biaxial bending angle, i.e. @8 andrv4.
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Figure 4. Moment—curvature diagrams and sectiomét $tates corresponding to different angles akkzl
bending: (2P = 0; (b)% =n/8; ()9 =n/4

The following limit states were considered and ifiesd on moment—curvature diagrams:

Minimum axial strain that reaches the ultimate lerstrain of masonry (i.&min = €u7).
Maximum axial strain that reaches the limit elasti@in of masonry in compression (i€gax

= gp), Which was associated with the peak compressieagth.
Maximum axial strain that reaches the ultimate casgive strain of masonry (i8sax = €u).

Resisting moment that reaches the maximum vsllgeMmax
Resisting moment that reaches a 20% degradatiaimeoipost-peak softening branch of the

moment—curvature diagram (iM.= 0.8VImay).

Therefore, three limit states capture the attairima@mxial strain limits and the other two limiass
identify the peak bending resistance and ultimadeding resistance that can be conventionally

assumed in sectional design for the life safetyt lgtate.
Analytical results highlight the following charaagtgics of nonlinear sectional behavior when URM is

assumed to have a non-zero tensile strength agid stftening in compression:

Non-zero bending capacity can be observed whelURM cross section is subjected biaxial
bending with zero or negative axial loading (iendion). In such conditions, the sectional

behavior is mainly influenced by tensile masonnygearties and ultimate compressive strain is

far from being achieved.



If biaxial bending is combined with compressiveaiitoading, the sequence of strain-based
limit states (particularly the attainment of ultirmaensile strain and limit elastic compressive
strain) can change with the magnitude of the ndeedlaxial load.

Softening plays a key role in the simulation of lmear sectional behavior, especially when
N/Nm < 0 orN/Nm> 0.5.

The magnitude of axial load has a significant impgacboth sectional resistance and ultimate
curvature, with the highest levels of bending monserd deformation capacity reached when
N/Nm = 0.5 andN/Nyn = 0.1, respectively. In the latter case of axihding, the 20%
degradation of bending resistance is reached samediusly with the ultimate compressive
strain of masonry or it may even not be attained.

As N/Nn increases from —0.1 to 0.9, the resisting bendwoegnent first increases up to the maximum
value atN/Nm = 0.5 and then decreases until the minimum registainder compressive axial loading
is reached. Nonetheless, the minimum level of peaisting moment is attained when tensile axial
loading is applied.

4. 3D INTERACTION DOMAINS

For each constitutive model selected in Parisi.e2816), each limit state and each axial loaclev
the authors computed the resisting moments andedl@ dimensionless 3D interaction domain that
allows the IP-OOP interaction to be consideredaiiety verifications. Figures 4(a)—(e) show the five
interaction domains corresponding to the previogslysidered constitutive model.
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Figure 1. Dimensionless 3D interaction domains e@iased with following limit states: (&hmin = €ut; () Emin =
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The interaction domains confirm that the URM crssstion can have a non-zero bending resistance at
low levels of tensile axial loading. In this respand in the case of uniaxial bending, Parisi et al
(2016) demonstrated that tensile strength playsla especially at high levels of axial load,
influencing the bending stiffness and maximum begdstrength. Such interaction domains can be
useful in macroelement capacity models of URM bndd that include degrees of freedom associated
with both in-plane and out-of-plane deformationsoafdbearing walls.

5. SIMPLIFIED BIAXIAL INTERACTION MODEL

The selection of three different groups of consititimodels for masonry in compression resulted in
considerable amount of interaction domains and nmbreeirvature diagrams. If the nonlinear analysis
procedure described in Sect. 3 is not computatipedficient, for instance because many simulations
must be run on a whole building structure, Mg-M, interaction can be still considered through a
simplified model derived through regression analysi detailed results. In this study, the authors
performed nonlinear regression on data sets canglpg to each selected group of constitutive
models and each limit state considered. The fohgvifiteraction model was selected:

MY L (M)
(MRJ J{MRJ =1 (5)

where:M, =M /N, T and My =M, /N, L are the normalized bending moments having theovect

directed along the x- and y-axis of the cross sactM,, =M. /N T and MRy =M,,/N L are the

bending moment capacities evaluated in the casmiakial bending combined with axial loading, for
the limit state under consideration; amd and B are regression coefficients. Based on the
dimensionless format of 3D interaction domains, déla¢hors assumed = 3 and Mgrx= Mgy = Mg,
allowing Equation 5 to be specialized as follows:

1

M, =(Mg-Mg)= (6)

Actually, a and3 were also separately determined through regressiatysis, but their values were
found to be approximately the same. Regressiorysisahllowed the authors to develop a series of
abacuses, each of them related to a prescribetidiate and one of the three groups of constitutive
models. Dealing with the limit state of peak remiste (i.eM = Mnay, Table 1 provides the values of

a and MR that allows the mean dimensionless moment capal‘dTi;,yunder biaxial bending to be
computed through Equation 6.

Table 1. Parameters of simplified interaction mddethe limit stateM = Mmax

N/Nm @ Mg c
—-0.05 2.505 0.013 2.78E-04
0 2.374 0.028 7.10E-04

0.05 2.247 0.043 9.73E-04
0.1 2.132 0.056 1.09E-03
0.15 2.081 0.068 1.14E-03
0.2 2.120 0.080 9.98E-04
0.25 1.948 0.093 5.28E-04
0.3 1.842 0.104 6.57E-04
0.35 1.762 0.113 9.75E-04
0.4 1.707 0.119 1.60E-03
0.45 1.666 0.122 2.17E-03
0.5 1.636 0.122 2.73E-03




0.55 1.593 0.120 3.18E-03
0.6 1.611 0.114 4.16E-03
0.65 1.689 0.103 7.88E-03
0.7 1.861 0.087 6.68E-03
0.75 1.834 0.074 4.63E-03
0.8 2.238 0.058 4.20E-03
0.85 2.236 0.045 2.15E-03
0.9 2.220 0.031 1.85E-03
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Figure 2. SimplifiedM,—My interaction domains for the limit statd = Mmax and constitutive models of
calcarenite masonry: (&/Nm = 0.25; (b)N/Nm = 0.50; (c)N/Nm = 0.75

Table 1 provides also the standard deviatioerQf, denoted by, which quantifies the uncertainty in

the M,—My interaction model. In this regard, Figures 5(ap)5and 5(c) show the dimensionless
interaction curves corresponding XN, = 0.25,N/Nmn = 0.5 andN/Ny, = 0.75, respectively, for the
limit state of peak resistance and the group ofktitutive models selected by Parisi et al. (2018) f
calcarenite masonry.



When the magnitude of axial load is high, the utaiety level of the regression model is rather high
as demonstrated by the larger bandwidiist fit+ std shown in Figure 5(c). The parametdv, and

a characterize the size and shape ofriteraction domain. In detailM, is the abscissa at whidtd

vanishes, so it defines the size of the interactiomain. The parameter defines the shape of the
domain.If a = 1, the dimensionless interaction curve turns toube squared and rotated 1#,
establishing a linear IP-OOP interaction. In thede; the bending momeiit decreases as the anfjle
increases from O tav4 and then increases &sfurther increases fromw4 to 2. If a = 2, the
dimensionless interaction curve becomes a circtk Mndoes not still depend ob. If a > 2, M
increases a8 increases in the range 4] and then decreases#@dncreases in the range fi2]. The
regression analysis results in Table 1 slwow 2 if N/N, falls in the interval [-0.05,0.2] or [0.8,0.9].
By contrast,a decreases up to values approximately equal toag M/Nn increases or decreases
towards 0.5. The variation M with 9 indicates the influence of the simultaneous preseriMy and
My. If a < 2, the higher intensity of the bending momenbinre direction induces an increase in the
resulting momenm, the opposite occurring in the presence of botidlmey moment components.df

> 2, the simultaneous presenceMf and My produces an increase M. This was found to be a
general outcome, regardless of the limit state uodesideration.

6. CONCLUSIONS

A nonlinear analysis procedure based on fiber miegadf URM cross sections subjected to biaxial
bending and axial loading was developed. Based qmesious selection of constitutive models,
moment—curvature diagrams at different levels ofrradized axial load were derived, identifying the
attainment of five limit states defined in termsandal strains or bending moment capacity. Detegctin
the considered limit states allowed 3D interactiomains to be plotted in a dimensionless format tha
removes dependency on section dimensions and masirength. Those interaction domains
combined with moment—curvature diagrams allows tildel flexural capacity modeling of URM
cross sections in walls subjected to combined am@land out-of-plane lateral actions.

A large number of analyticaN-M,—My interaction domains corresponding to differentssef
constitutive models were cut at several axial lagls. Regression analysis of analytical data sets
allowed a simplified (empiricalM—My interaction model to be characterized at e&tlevel,
providing a set of abacuses for each limit stat selected group of constitutive models. Both mean
and dispersion in moment capacity estimation cardesidered, allowing model uncertainty to be
taken into account. Given the bending moment in precipal direction of the cross section, the
simplified interaction model allows the bending marhcapacity in the perpendicular direction to be
estimated.

Both detailed and simplified capacity models in€éube effects of mechanical nonlinearity in tension
and compression, as well as the impact of geonag¢trionlinearity due to tensile cracking in both
directions of the cross section. In cases of URMsasaubjected to medium levels of axial load and/or
characterized by low shear strength or low in-plalemderness ratio, the IP-OOP interaction can be
also influenced by shear deformation, resultingaipotential shear or mixed flexural-shear failure
mode. In such cases, the flexural capacity modepgsed in this study cannot be used alone so it
should be extended or combined with other sheaaaigpmodels. This motivates further research on
IP-OOP interaction through experimental, numerarad analytical approaches.
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