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ABSTRACT 
 
Seismic performance of masonry buildings is usually assessed at local and global levels, separately. Seismic 
safety against local collapse mechanisms is evaluated via macroblock models and linear/nonlinear kinematic 
analysis methods. Conversely, safety against in-plane failure modes is assessed through nonlinear static/dynamic 
analysis of global macroelement models. Nonetheless, the in-plane seismic capacity of masonry walls can be 
strongly influenced by simultaneous response to out-of-plane actions. Although this issue has been recently 
investigated in a few experimental programs and numerical studies, the level of knowledge is still limited. 
In this study, the authors present a novel fiber-based capacity model that allows performance-based seismic 
design/assessment of unreinforced masonry piers subjected to combined in-plane and out-of-plane loading. 
Based on a nonlinear incremental analysis procedure, moment–curvature diagrams are derived at different levels 
of axial load and 3D flexural strength domains are developed at five performance limit states. Nonlinear 
sectional capacity under biaxial bending and axial loading is directly governed by the macroscopic constitutive 
model assigned to masonry and sectional shape. Analysis results show a strong interaction between bending 
moments related to in-plane and out-of-plane loading, which changes with the axial load level. Simplified biaxial 
interaction models are derived through nonlinear regression analysis for engineering practice. It is shown that the 
axial load level and ratio between in-plane and out-of-plane actions has an impact on sectional ductility at 
different limit states. The capacity model allows considering the softened response of masonry sections under 
increasing axial load levels, which also induces a reduction in ultimate axial load. 
 
Keywords: Masonry walls; Combined in-plane and out-of-plane loading; Analytical capacity model; 
Performance limit states; Biaxial bending–axial load interaction models 
 
 
1. INTRODUCTION  
 
Nonlinear behavior of masonry walls under in-plane (IP) and out-of-plane (OOP) actions has been 
usually investigated through different capacity models and analysis methods. Nevertheless, destructive 
earthquakes have shown that nonlinear response of masonry buildings can be affected by the 
interaction between in-plane and out-of-plane damage (e.g. Parisi and Augenti 2013a). Some recent 
experimental campaigns and numerical investigations have further confirmed a strong IP-OOP 
interaction. Najafgholipour et al. (2013) conducted a series of tests on brick masonry panels subjected 
in-plane shear loading and out-of-plane bending. Both the experimental results and the numerical 
model calibrated by those researchers have highlighted that the longitudinal slenderness of walls 
strongly influences the interaction level. The latter was characterized up to the peak strength. Three 
slenderness levels were investigated and as many interaction curves were obtained. It was thus 
obtained an interaction model that provides the minimum envelope of the abovementioned three 
curves. 
Agnihotri et al. (2013) further investigated the IP-OOP interaction from a numerical point of view. A 
nonlinear finite element (FE) model of unreinforced masonry (URM) walls with different levels of 
longitudinal and transverse slenderness was developed. The interaction was evaluated by considering 
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cyclic in-plane drifts and monotonically increasing out-of-plane pressures. It was then assessed the 
out-of-plane capacity reduction due to the in-plane damage of the wall. 
Najafgholipour et al. (2014) carried out a numerical sensitivity study based on an anisotropic 
macromodel, demonstrating that the IP-OOP interaction depends not only on the longitudinal 
slenderness of the wall but also on the elastic and inelastic properties of the masonry in tension. Based 
on numerical results, an empirical capacity model was obtained for predicting the resistance in one 
direction from the load in the orthogonal direction. 
Dolatshahi et al. (2015) applied the macromodeling technique to different masonry panels, obtaining 
IP-OOP interaction curves and comparing results with those derived from FE analysis. 
Due to the importance of the problem, the authors of this paper extended a theoretical research 
program that initially focused on assessing the strength and deformation capacities of URM cross 
sections subjected to uniaxial bending and axial load (Parisi and Augenti 2013b, Parisi et al. 2016). 
This mechanical behavior has been investigated considering a wide variety of macroscopic 
constitutive models available in literature for ordinary masonry. Parisi and Augenti (2013b) quantified 
the influence of the strength degradation of masonry on bending moment–axial load interaction 
domains, considering their variation with strain ductility that was taken as third dimension of the 
sectional capacity model. More recently, Parisi et al. (2016) identified the constitutive models that 
provide the best estimate of the moment–curvature behavior of rectangular URM cross sections made 
of clay brick masonry, calcarenite stone masonry or one of them without distinction. Therefore, the 
aim of this paper is to evaluate the effects of IP-OOP interaction along the principal axes of 
rectangular cross sections, both in terms of strength and deformation capacity. 
 
 
2. METHODOLOGY 
 
This analytical study focuses on the flexural response of URM walls to in-plane and out-of-plane point 
lateral loads that statically simulate the inertia forces transmitted by floor diaphragms in buildings. 
Particularly in the case of existing URM buildings not designed for earthquake resistance, the 
magnitude of out-of-plane seismic actions distributed by flexible floors (made of, for instance, 
timber/steel joist systems without rigid slab) can be significantly higher than that of inertia pressures 
associated with the selfweight of walls. This means that distributed out-of-plane pressures as those 
considered in previous studies (e.g. Agnihotri et al. 2013) were replaced by lateral forces acting on top 
of the wall. Assuming nonlinear constitutive models of URM assemblages selected by Parisi et al. 
(2016) and that plane sections remain plane after flexural deformation, this study consisted of the steps 
described below. 
1. Derivation of moment–curvature diagrams corresponding to each selected constitutive model, 

given the axial load on the section. Each diagram was obtained by changing the angle ϑ between 
the resulting moment vector M  = [Mx, My] and the x-axis of the section. 

2. Definition of five limit states in terms of tensile/compressive strength limit at material level or 
resisting bending moment at sectional level. 

3. Identification of the limit states on each moment–curvature diagram and deriving the 
corresponding N–Mx–My three-dimensional (3D) interaction domains. 

4. Derivation of Mx–My two-dimensional (2D) interaction domains by sectioning 3D domains at 
prescribed levels of axial load. 

5. Regression analysis of Mx–My data corresponding to each group of constitutive models and 
derivation of a simplified capacity model that allows predicting the peak resisting moment in a 
principal direction of cross section given the axial load and bending moment in the perpendicular 
direction. 

The URM cross section was assumed to have length L and thickness T. The cross section was 
discretized in 900 fibers, which is an optimal number evaluated through a sensitivity analysis. For all 
the selected constitutive models, the tensile behavior of masonry was assumed to be characterized by a 
linear elastic branch up to peak tensile strength and a linear softening branch until the ultimate tensile 
strain is reached. The Young’s moduli in tension and compression were assumed to be the same. 
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3. NONLINEAR MOMENT–CURVATURE ANALYSIS 
 
3.1 Computational procedure 
 
An iterative incremental procedure of sectional analysis was developed in MATLAB® to perform 
numerical integration of constitutive equations or stress–strain data sets. Given the axial load and a 
couple of in-plane and out-of-plane lateral loads on the URM wall (i.e. Fip and Foop in Figure 1), the 
relationship between bending moments Mx and My of the most stressed section is known. In the 
nonlinear analysis procedure, the authors parameterized the ratio Mx/My through the biaxial bending 
angle  
ϑ = tan–1(My/Mx). The distributions of stresses and strains over the cross section were obtained by 
assuming two parameters, i.e. bending curvature ϕ and ϑ, as well as the axial load (Figure 2). The 
curvature components ϕx and ϕy along the x-axis and y-axis of cross section were defined as follows: 

21 tan
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ϕϕ
ϑ

= −
+

                          (1) 

2

tan

1 tan
y

ϕ ϑϕ
ϑ

=
+

 (2) 

Both mechanical and geometrical nonlinearities are taken into account, the latter being related to the 
fact that the effective cross section depends on the relative magnitude of lateral loads. 
 

 
 

Figure 1. Masonry wall subjected to in-plane and out-of-plane loading 
 

 
 

Figure 2. Relationship between moment vector M , biaxial bending angle ϑ and curvature ϕ 
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Figure 3 shows a flowchart in which the incremental iterative analysis is summarized. 
 

 
 

Figure 3. Flowchart of the incremental iterative procedure 
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The moment–curvature diagram of the URM cross section is derived through the following main steps 
where i and k denote the curvature increment and iteration within each increment, respectively: 
  

1. Discretize the URM cross section into a number n of fibers with sectional area Af = LT/n. 
2. Assign a constitutive model (in the form of either stress–strain equations or data sets) to 

masonry in tension and compression. 
3. Set the axial load level N = N* and biaxial bending angle ϑ = ϑ*. 
4. Set the bending curvature φ = φi. 
5. Assume two trials of maximum axial strain max,1,

k
iε  and max,2,

k
iε  in order to search the actual 

value εmax corresponding to the i-th level of bending curvature. max,1,
k

iε  is set equal to the 

maximum axial strain that would occur if the sectional behavior is linear, whereas the second 
strain trial is defined as max,2, max,2,0.5k k

i iε ε= . The values assigned to max,1,
k

iε  and max,2,
k

iε  have 

significant influence on the convergence rate of the algorithm. 

6. Compute the sectional distribution of axial strains ( ),
k

i
x yε  corresponding to each maximum 

strain trial, given the assumption of plane section after flexural deformation. 

7. Compute the sectional distribution of axial stresses ( ),
k

i
x yσ ε 

 
 corresponding to each 

maximum strain trial. 
8. Calculate the axial loads N1,k and N2,k through numerical integration of axial stresses 

corresponding to max,1,
k

iε  and max,2,
k

iε . 

9. Check that the following inequality is met: 

2,k
N

N
tol

N

N ∗

∗

−
<  (3) 

If inequality 3 is not satisfied, repeat steps 6–9 by changing max,1,
k

iε  and max,2,
k

iε  until 

convergence is reached. Otherwise, the distribution of axial strains corresponding to max,2,
k

iε  

allows sectional balance with the given axial load. 
10. Set the actual maximum strain max, max,2,

k
i iε ε= . 

11. Check that the maximum axial strain does not exceed the ultimate strain of masonry in 
compression, that is: 

max,i uε ε≤  (4) 

12. If inequality 4 is not met, repeat steps 6–11 till convergence. Otherwise, compressive failure is 
not reached. 

13. Compute the bending moments Mx,i and My,i through numerical integration of axial stresses. 
14. Assume a curvature increment ∆φi > 0, set φi+1 = φi + ∆φi and repeat steps 5–13 until ultimate 

strain of masonry is achieved. 
This incremental iterative procedure was implemented according to the secant method where 
numerical tolerance on axial load was assumed to be tolN = 10–7. In detail, the secant method was used 
when changing max,1,

k
iε  and max,2,

k
iε  in subsequent iterations. 

 
3.2 Moment–curvature diagrams and limit states 
 
The procedure described above allowed the moment–curvature diagrams to be obtained under varying 
angle ϑ and axial load N. Figure 4 shows dimensionless moment–curvature diagrams in which 
bending moment M is normalized to a geometric parameter H times the maximum axial load capacity 
Nm and the bending curvature ϕ is normalized to H. In case of biaxial bending, H was defined as a 
nonlinear transformation of Mx, My, L and T, according to moment vector decomposition along the 
principal axes of the cross section. Each moment–curvature diagram is associated with a given axial 
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load normalized to the maximum axial load capacity, i.e. N/Nm. Numerical integration was carried out 
by assuming the constitutive model proposed by Augenti and Parisi (2010) for masonry subjected to 
compression perpendicular to bed joints. Moment–curvature diagrams were derived for three values of 
biaxial bending angle, i.e. 0, π/8 and π/4. 
 

  

 
Figure 4. Moment–curvature diagrams and sectional limit states corresponding to different angles of biaxial 

bending: (a) ϑ = 0; (b) ϑ = π/8; (c) ϑ = π/4 

 
The following limit states were considered and identified on moment–curvature diagrams: 

– Minimum axial strain that reaches the ultimate tensile strain of masonry (i.e. εmin = εuT).  
– Maximum axial strain that reaches the limit elastic strain of masonry in compression (i.e. εmax 

= εp), which was associated with the peak compressive strength. 
– Maximum axial strain that reaches the ultimate compressive strain of masonry (i.e. εmax = εu). 
– Resisting moment that reaches the maximum value M = Mmax. 
– Resisting moment that reaches a 20% degradation on the post-peak softening branch of the 

moment–curvature diagram (i.e. M = 0.8Mmax). 
Therefore, three limit states capture the attainment of axial strain limits and the other two limit states 
identify the peak bending resistance and ultimate bending resistance that can be conventionally 
assumed in sectional design for the life safety limit state. 
Analytical results highlight the following characteristics of nonlinear sectional behavior when URM is 
assumed to have a non-zero tensile strength and strain softening in compression: 

– Non-zero bending capacity can be observed when the URM cross section is subjected biaxial 
bending with zero or negative axial loading (i.e. tension). In such conditions, the sectional 
behavior is mainly influenced by tensile masonry properties and ultimate compressive strain is 
far from being achieved. 

a b 

c 
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– If biaxial bending is combined with compressive axial loading, the sequence of strain-based 
limit states (particularly the attainment of ultimate tensile strain and limit elastic compressive 
strain) can change with the magnitude of the normalized axial load. 

– Softening plays a key role in the simulation of nonlinear sectional behavior, especially when 
N/Nm ≤ 0 or N/Nm ≥ 0.5. 

– The magnitude of axial load has a significant impact on both sectional resistance and ultimate 
curvature, with the highest levels of bending moment and deformation capacity reached when 
N/Nm = 0.5 and N/Nm = 0.1, respectively. In the latter case of axial loading, the 20% 
degradation of bending resistance is reached simultaneously with the ultimate compressive 
strain of masonry or it may even not be attained. 

As N/Nm increases from –0.1 to 0.9, the resisting bending moment first increases up to the maximum 
value at N/Nm = 0.5 and then decreases until the minimum resistance under compressive axial loading 
is reached. Nonetheless, the minimum level of peak resisting moment is attained when tensile axial 
loading is applied.  
 
 
4. 3D INTERACTION DOMAINS 
 
For each constitutive model selected in Parisi et al. (2016), each limit state and each axial load level, 
the authors computed the resisting moments and plotted a dimensionless 3D interaction domain that 
allows the IP-OOP interaction to be considered in safety verifications. Figures 4(a)–(e) show the five 
interaction domains corresponding to the previously considered constitutive model. 

 
Figure 1. Dimensionless 3D interaction domains associated with following limit states: (a) εmin = εuT; (b) εmin = 

εp; (c) εmin = εu; (d) M = Mmax; (e) M = 0.8Mmax 

a b c 

d e 
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The interaction domains confirm that the URM cross section can have a non-zero bending resistance at 
low levels of tensile axial loading. In this respect and in the case of uniaxial bending, Parisi et al. 
(2016) demonstrated that tensile strength plays a role especially at high levels of axial load, 
influencing the bending stiffness and maximum bending strength. Such interaction domains can be 
useful in macroelement capacity models of URM buildings that include degrees of freedom associated 
with both in-plane and out-of-plane deformations of loadbearing walls. 
 
 
5. SIMPLIFIED BIAXIAL INTERACTION MODEL 
 
The selection of three different groups of constitutive models for masonry in compression resulted in a 
considerable amount of interaction domains and moment–curvature diagrams. If the nonlinear analysis 
procedure described in Sect. 3 is not computationally efficient, for instance because many simulations 
must be run on a whole building structure, the Mx–My interaction can be still considered through a 
simplified model derived through regression analysis of detailed results. In this study, the authors 
performed nonlinear regression on data sets corresponding to each selected group of constitutive 
models and each limit state considered. The following interaction model was selected: 

1yx

Rx Ry

MM

M M

βα
  

+ =    
   

 (5) 

where: x x mM TM N=  and y y mM LM N=  are the normalized bending moments having the vectors 

directed along the x- and y-axis of the cross section; Rx Rx mTM M N=  and Ry Ry mLM M N=  are the 

bending moment capacities evaluated in the case of uniaxial bending combined with axial loading, for 
the limit state under consideration; and α and β are regression coefficients. Based on the 
dimensionless format of 3D interaction domains, the authors assumed α = β and MRx = MRy = MR, 
allowing Equation 5 to be specialized as follows: 

( )
1

y R xM M Mα α α= −  (6) 

Actually, α and β were also separately determined through regression analysis, but their values were 
found to be approximately the same. Regression analysis allowed the authors to develop a series of 
abacuses, each of them related to a prescribed limit state and one of the three groups of constitutive 
models. Dealing with the limit state of peak resistance (i.e. M = Mmax), Table 1 provides the values of 
α and RM  that allows the mean dimensionless moment capacity yM  under biaxial bending to be 

computed through Equation 6.  
 

Table 1. Parameters of simplified interaction model for the limit state M = Mmax 

 

N/Nm α RM  σ 

–0.05 2.505 0.013 2.78E-04 
0 2.374 0.028 7.10E-04 
0.05 2.247 0.043 9.73E-04 
0.1 2.132 0.056 1.09E-03 
0.15 2.081 0.068 1.14E-03 
0.2 2.120 0.080 9.98E-04 
0.25 1.948 0.093 5.28E-04 
0.3 1.842 0.104 6.57E-04 
0.35 1.762 0.113 9.75E-04 
0.4 1.707 0.119 1.60E-03 
0.45 1.666 0.122 2.17E-03 
0.5 1.636 0.122 2.73E-03 
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0.55 1.593 0.120 3.18E-03 
0.6 1.611 0.114 4.16E-03 
0.65 1.689 0.103 7.88E-03 
0.7 1.861 0.087 6.68E-03 
0.75 1.834 0.074 4.63E-03 
0.8 2.238 0.058 4.20E-03 
0.85 2.236 0.045 2.15E-03 
0.9 2.220 0.031 1.85E-03 

 
 

   

 
 
Figure 2. Simplified Mx–My interaction domains for the limit state M = Mmax and constitutive models of 
calcarenite masonry: (a) N/Nm = 0.25; (b) N/Nm = 0.50; (c) N/Nm = 0.75 

 
Table 1 provides also the standard deviation of yM , denoted by σ, which quantifies the uncertainty in 

the Mx–My interaction model. In this regard, Figures 5(a), 5(b) and 5(c) show the dimensionless 
interaction curves corresponding to N/Nm = 0.25, N/Nm = 0.5 and N/Nm = 0.75, respectively, for the 
limit state of peak resistance and the group of constitutive models selected by Parisi et al. (2016) for 
calcarenite masonry. 

a b 

c 



10 
 
 

When the magnitude of axial load is high, the uncertainty level of the regression model is rather high, 
as demonstrated by the larger bandwidth best fit ± std shown in Figure 5(c). The parameters RM  and 

α characterize the size and shape of the interaction domain. In detail, RM  is the abscissa at which yM  

vanishes, so it defines the size of the interaction domain. The parameter α defines the shape of the 
domain. If α = 1, the dimensionless interaction curve turns out to be squared and rotated of π/4, 
establishing a linear IP-OOP interaction. In that case, the bending moment M decreases as the angle ϑ 
increases from 0 to π/4 and then increases as ϑ further increases from π/4 to π/2. If α = 2, the 
dimensionless interaction curve becomes a circle and M does not still depend on ϑ. If α > 2, M 
increases as ϑ increases in the range [0,π/4] and then decreases as ϑ increases in the range [0,π/2]. The 
regression analysis results in Table 1 show α > 2 if N/Nm falls in the interval [–0.05,0.2] or [0.8,0.9]. 
By contrast, α decreases up to values approximately equal to 1.6 as N/Nm increases or decreases 
towards 0.5. The variation in M with ϑ indicates the influence of the simultaneous presence of Mx and 
My. If α < 2, the higher intensity of the bending moment in one direction induces an increase in the 
resulting moment M, the opposite occurring in the presence of both bending moment components. If α 
> 2, the simultaneous presence of Mx and My produces an increase in M. This was found to be a 
general outcome, regardless of the limit state under consideration. 
 
 
6. CONCLUSIONS 
 
A nonlinear analysis procedure based on fiber modeling of URM cross sections subjected to biaxial 
bending and axial loading was developed. Based on a previous selection of constitutive models, 
moment–curvature diagrams at different levels of normalized axial load were derived, identifying the 
attainment of five limit states defined in terms of axial strains or bending moment capacity. Detecting 
the considered limit states allowed 3D interaction domains to be plotted in a dimensionless format that 
removes dependency on section dimensions and masonry strength. Those interaction domains 
combined with moment–curvature diagrams allows a detailed flexural capacity modeling of URM 
cross sections in walls subjected to combined in-plane and out-of-plane lateral actions. 
A large number of analytical N–Mx–My interaction domains corresponding to different sets of 
constitutive models were cut at several axial load levels. Regression analysis of analytical data sets 
allowed a simplified (empirical) Mx–My interaction model to be characterized at each N-level, 
providing a set of abacuses for each limit state and selected group of constitutive models. Both mean 
and dispersion in moment capacity estimation can be considered, allowing model uncertainty to be 
taken into account. Given the bending moment in one principal direction of the cross section, the 
simplified interaction model allows the bending moment capacity in the perpendicular direction to be 
estimated. 
Both detailed and simplified capacity models include the effects of mechanical nonlinearity in tension 
and compression, as well as the impact of geometrical nonlinearity due to tensile cracking in both 
directions of the cross section. In cases of URM walls subjected to medium levels of axial load and/or 
characterized by low shear strength or low in-plane slenderness ratio, the IP-OOP interaction can be 
also influenced by shear deformation, resulting in a potential shear or mixed flexural-shear failure 
mode. In such cases, the flexural capacity model proposed in this study cannot be used alone so it 
should be extended or combined with other shear capacity models. This motivates further research on 
IP-OOP interaction through experimental, numerical and analytical approaches. 
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