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ABSTRACT 
 

In this work, a Material Point Method (MPM) is employed for the analysis of rocking body dynamics. MPM 

is effectively an Arbitrary Lagrangian Eulerian scheme where the continuum is represented by a set of material 

points that are moving within a fixed computational grid; solution of the governing equations is performed in this 

grid considering an appropriate mapping. To accurately account for the contact dynamics between the bodies, a 

discrete field approach is adopted whereby each deformable domain is treated independently whereas 

impenetrability constraints and a Coulomb friction model are introduced to account for the contact at the 

interface. The proposed scheme is used to simulate the rocking response of a rigid body on an elastic-half space 

and comparisons are made with the Inverted Pendulum and Winkler rocking models. 
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1. INTRODUCTION  

 

Rocking dynamics occur in systems whose connection with their support medium is achieved through 

a non-tensile interface where the shear forces are frictional. Examples of rocking systems can be found 

in a wide range of applications: from museum exhibits and hospital equipment to electrical devices 

and structural elements. The response of such systems when subjected to ground excitations is 

substantially different than components with moment connections. A distinctive feature is the 

appearance of rigid body rotations and displacements during the motion. These are often dominant and 

hence the criteria of failure of such bodies are mainly kinematic, rather than the usual stress 

exceedance criteria used for typical structural systems. 

 

As a reasonable consequence, the majority of relevant literature examines rocking systems under the 

assumptions of rigid support medium and body (Housner 1963), or by assuming that the rocking body 

is flexible only in the lateral direction (Acikgoz and DeJong 2012). However, the decelerations of the 

rocking body during the occurring impacts are often of the order of tenths of 𝑔. These large forces 

may induce large local stresses at the points of application that may deteriorate the contact surface or 

lead to local failures. 

 

The previous mode of failure has often been ignored in the literature. This is mainly due to the 

computational complexity of the problem that lays in between large displacement kinematics and 

computational mechanics. The change of the contact surface during the rocking motion in combination 

with an impact and sliding contact problem pose substantial challenges for standard FE methods: they 

result in the need of re-meshing techniques, or very dense initial meshes. The latter solution in turn 
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results in further increased demands from the time integration method used so as to ensure stability. 

Such an approach could potentially lead to the deceiving result that the underlying physical problem is 

chaotic, when in reality the issue often lies in the robustness of the computational treatment. 

Furthermore, mesh distortion errors that are inevitable in large kinematics finite element analyses 

hinder the fidelity of rocking body simulations where the deformability of the contact surfaces 

significantly affects the resulting contact forces.  

 

Recently, particle in cell methods and most notably material point methods have been found to provide 

solution of high fidelity for problems pertaining to large displacement and large deformations (Sulsky 

et al. (1994)). Rather than relying on the notion of a deforming mesh, material point methods 

introduce a particle based approximation for the deformable body. Contrary to purely particle based 

methods however, particles in Material Point Methods are mapped onto a non-deforming Eulerian 

mesh where solution of the governing equations is performed. This introduces a considerable 

advantage as opposed to purely particle based methods as the continuum approximation is preserved 

thus releasing the requirement for high particle densities. Hence, Material Point Methods retain the 

accuracy of particle based methods but avoid their increased computational costs. 

 

To alleviate the previous problems and develop rocking models that allow the study of the stresses 

induced in rocking systems the authors propose the use of a Material Point Method (MPM) for 

simulating the rocking kinematics of deformable bodies. In this paper, the developed model is used to 

study the dynamics of a relatively stiff body and support medium and the solutions obtained are 

compared versus existing models in the literature. 

 

2. RIGID BODY ROCKING MODELS 

 

The Inverted Pendulum Model (IPM), developed by Housner (1963), is potentially the most popular 

model for rocking bodies. The rocking body, the properties and the axes convention used in the 

following equations are defined in Figure 1. The rigid body is defined by its mass 𝑚, half-width and 

half-height 𝑏 and ℎ, respectively. The occurring moment of inertia, about any of the bottom corners 

0 and 0′ , is denoted as 𝐼0 whereas 𝑅 = √ℎ2 + 𝑏2 stands for the distance from a corner to the center of 

mass and the angle 𝑎 = tan−1 𝑏 ℎ⁄  describes the slenderness of the block. 

 
Figure 1. Inverted Pendulum Model (IPM defined by Housner (1963) for a free-standing rocking block. 

 

The body rocks with respect to one of the corners depending on the sign of 𝜃. Thus, it can be 

simulated by a pendulum whose pin is located at that corner as shown in Figure 1. This further implies 

that the body is assumed to not slide, or experience free-flight, that the body and the ground are rigid, 

and that the response of the body is strictly planar.  
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When 𝜃 transitions through zero an impact occurs between the body and the ground and as a result, the 

body may lose kinetic energy as it transitions, accordingly, from one pendulum pattern to the other. If 

it is further assumed that the angular momentum with respect to the future rocking corner is 

conserved, the reduction of energy factor, 𝑟, which relates the kinetic energy before and after impact is 

expressed as 

 

𝑟 =  
( 𝜃̇ 

+
 
 )

2

( 𝜃̇ 
−

 
 )

2 =
1 2𝛪0𝜃̇2 

2⁄

1 2𝛪0𝜃̇1 
2⁄

= [1 −
𝑚𝑅2

𝐼0
(1 − cos (2𝑎 ))]

2

  (1) 

 

where 𝜃̇ 
+

 
  and 𝜃̇ 

–
 
  are the angular velocity after and before impact respectively. Hence, the IPM results 

in a discontinuity of the velocity state before and after the impact. It should further be noted that as 

discussed in Chatzis et al. (2017), the reduction of energy factor could well be within the value defined 

in equation (1) and unity, i.e., no loss of energy during impacts. To be able to alleviate that related 

uncertainty the contact interface mechanics have to be specified. 

 

A means of achieving that while also introducing the deformability of the support medium is through 

the Winkler Model (WM) proposed in Chatzis and Smyth (2012a) for rocking bodies with a flat base. 

The model is illustrated in the following Figure 2 

 

 
Figure 2. WM for rocking bodies on deformable media 

 

The support medium parameters used in the model are the distributed per unit length stiffness 𝑘𝑙 
 

 
 and 

damping coefficients 𝑐𝑙 
 

 
 , while nonlinear horizontal springs are used for the frictional forces 𝐹𝑓 

 
 
 . A 

Coulomb friction model is used that is defined by the coefficient of friction 𝜇𝑓 
 

 
 . The motion of the 

rigid body is described by the horizontal, vertical and rotational generalized coordinates (𝑥, 𝑦 and 𝜃 

respectively in the paper). As a result, the model allows for including the effects of impact, sliding and 

free flight without discontinuities in the states. Additionally, no assumption needs to be made 

regarding the impact duration as the dissipated energy is a parameter of the WM properties. 

 

3. MATERIAL POINT METHOD FOR CONTACT DYNAMICS 

 

3.1 Strong form 

 

An arbitrary deformable domain 𝛺  is considered herein with external boundary 𝜕𝛺 . It is assumed that 

the domain 𝛺 consists of two deformable bodies, termed discrete fields, i.e., 𝛺1 and 𝛺2 so that 𝛺1 ∪
 𝛺2 =  𝛺 . At time 𝑡, the two discrete fields are considered to be in contact along the surface 𝜕𝛺𝑓̅ as 

shown in Figure 3(a). The strong form of this contact problem together with the corresponding 

boundary and initial conditions is presented in equations (2) below 

 

𝛻 · 𝝈 + 𝒃 =  𝜌 𝒖̈ on 𝛺  (a)  

𝝈 · 𝒏 =  𝒕̅ on 𝜕𝛺𝑡̅ (b)  

𝒖 = 𝒖̅ on 𝜕𝛺𝑢̅ (c) (2) 
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𝒖 = 𝒖  
(0)     ,     𝒖̇ = 𝒖̇ 

(0)       ,      𝒖̈ = 𝒖̈ 
(0)  on 𝛺  

(0)  (d)  

𝝈1 · 𝒏1
𝑐𝑜𝑛𝑡 =  𝒇̅1

𝑐𝑜𝑛𝑡      ,      𝝈2 · 𝒏2
𝑐𝑜𝑛𝑡 =  𝒇̅2

𝑐𝑜𝑛𝑡  on 𝜕𝛺𝑓̅ (e)  

 

where 𝝈, 𝒃 are the stress field and body forces, 𝜌 is the mass density of domain 𝛺 whereas 𝒖, 𝒖̇ and 𝒖̈ 

are the displacement, velocity and acceleration field respectively. Furthermore, it is assumed that 

traction/pressure forces 𝒕̅ are applied on 𝜕𝛺𝑡̅ while 𝒖̅ and 𝒏 stands for the prescribed displacement 

field on 𝜕𝛺𝑢̅ and the outward unit normal vector of the boundary 𝜕𝛺 respectively. When the two 

bodies are in contact, a contact force 𝒇̅ 
𝑐𝑜𝑛𝑡 is also acting on them. In particular, the contact force  

 

𝒇̅1
𝑐𝑜𝑛𝑡 = 𝒇̅1

𝑛𝑜𝑟 + 𝒇̅1
𝑡𝑎𝑛 = 𝑓1̅

𝑛𝑜𝑟 · 𝒏1
𝑐𝑜𝑛𝑡 + 𝑓1̅

𝑡𝑎𝑛 · 𝒔1
𝑐𝑜𝑛𝑡  

 

is applied on 𝛺1 from 𝛺2 whereas definition of 𝒇̅2
𝑐𝑜𝑛𝑡 is derived accordingly. These contact forces 

satisfy the boundary conditions (2e) along 𝜕𝛺𝑓̅ where 𝝈1, 𝒏1
𝑐𝑜𝑛𝑡 and 𝒔1

𝑐𝑜𝑛𝑡are the stress field, the 

outward unit normal and tangential vector of body 𝛺1 (similarly for 𝝈2 and 𝒏2
𝑐𝑜𝑛𝑡) respectively. 

Additionally, the strong form is supplemented by the kinematic constrains shown below, i.e. 

 

𝒏1
𝑐𝑜𝑛𝑡 =  −𝒏2

𝑐𝑜𝑛𝑡       ,         𝒔1
𝑐𝑜𝑛𝑡 =  −𝒔2

𝑐𝑜𝑛𝑡 
Collinearity 

 (a)  

𝒇̅1
𝑛𝑜𝑟 = −𝒇̅2

𝑛𝑜𝑟         ,         𝒇̅1
𝑡𝑎𝑛 = −𝒇̅2

𝑡𝑎𝑛  (b)  

𝑓̅
 
𝑛𝑜𝑟 ≤ 0 Non-tension  (c)  

𝛾𝑛
 ≤ 0 Impenetrability on 𝜕𝛺𝑓̅ (d) (3) 

𝛾𝑛
 𝑓̅

 
𝑛𝑜𝑟 = 0 

Complementarity 

(normal) 
 (e)  

|𝑓̅
 
𝑡𝑎𝑛| ≤ 𝜇𝑓|𝑓̅

 
𝑛𝑜𝑟| Coulomb friction model  (f)  

|𝛾𝑠
 | ≥ 0 Slip/No-slip  (g)  

|𝛾𝑠
 |(|𝑓̅

 
𝑡𝑎𝑛| − 𝜇𝑓|𝑓̅

 
𝑛𝑜𝑟|) = 0 

Complementarity 

(tangential) 
 (h)  

 

where 

 

𝛾𝑛
 =  ( 𝒖̇1

 − 𝒖̇2
 

 
 ) · 𝒏1

𝑐𝑜𝑛𝑡 = ( 𝒖̇2
 − 𝒖̇1

 
 
 ) · 𝒏2

𝑐𝑜𝑛𝑡 𝛾𝑠
 =  ( 𝒖̇1

 − 𝒖̇2
 

 
 ) · 𝒔1

𝑐𝑜𝑛𝑡 = ( 𝒖̇2
 − 𝒖̇1

 
 
 ) · 𝒔2

𝑐𝑜𝑛𝑡 
 

and 𝜇𝑓 stands for the friction coefficient. These kinematic constrains are imposed on 𝜕𝛺𝑓̅ to satisfy 

collinearity, impenetrability, and non-tension as well as to account for slip or stick conditions 

(according to Coulomb friction model) between the two bodies. 

 

  
(a) (b) 

Figure 3. (a) Continuum bodies (discrete fields) into contact (b) Material Point Method approximation 

 

3.2 Numerical Implementation 

 

In material point method, the continuum is discretised into a set of 𝑁𝑝 material points (integration 

points) that are moving within a fixed Eulerian Grid. The Eulerian Grid is discretised into a set of 𝑁𝑐 
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grid cells and corresponding grid nodes 𝑁𝑛 where the equations of motion are solved (see also Figure 

3(b)). This grid is a non-deforming mesh where all the material points quantities are mapped into 

utilizing appropriate interpolation functions. Based on this discretization, both the mass density 𝜌𝑏 and 

domain volume 𝛺𝑏 are additively decomposed for each discrete field 𝑏 where 𝑏 = 1,2  into  

 

𝜌𝑏(𝒙𝑏 , 𝑡) = ∑ 𝜌𝑏𝑝𝛺𝑏𝑝 𝛿(𝒙𝑏 − 𝒙𝑏𝑝)

𝑁𝑝

𝑝=1

 (a) 𝛺𝑏(𝒙𝑏 , 𝑡) = ∑ 𝛺𝑏𝑝 𝛿(𝒙𝑏 − 𝒙𝑏𝑝)

𝑁𝑝

𝑝=1

 (b) (4) 

 

respectively, where denotes 𝛿 the Dirac function. All the quantities with the subscript 𝑝 are referred to 

the 𝑝𝑡ℎ material point corresponding quantities. Employing Galerkin approximation (Hughes, 2012) 

and defining appropriate trial solution and weighting spaces as  

 

Ѕ = {𝒖 ∈ 𝐻1(𝛺)| 𝒖 = 𝒖̅, 𝜕𝛺𝑢̅} Ɗ = {𝒘 ∈ 𝐻1(𝛺)| 𝒘 = 0, 𝜕𝛺𝑢̅} 
 

for the displacement field 𝒖 and weighting field 𝒘 respectively, the strong form of equation (2) is cast 

into the following weak form  

 

∫ (𝜌𝑏𝒖̈𝑏 ∙ 𝒘𝑏)
𝛺𝑏

𝑑𝛺𝑏 + ∫ (𝝈𝑏: 𝛻𝒘𝑏)
𝛺𝑏

𝑑𝛺𝑏

= ∫ (𝒃𝑏 ∙ 𝒘𝑏)
𝛺𝑏

𝑑𝛺𝑏 + ∫ (𝒕̅𝑏 ∙ 𝒘𝑏)
𝜕𝛺𝑏𝑡̅

𝑑𝜕𝛺𝑏𝑡̅ + ∫ (𝒇̅𝑏
𝑐𝑜𝑛𝑡 ∙ 𝒘𝑏)

𝜕𝛺𝑏𝑓̅

𝑑𝜕𝛺𝑏𝑓̅ 
 (5) 

 

By further utilizing equations (4a) and (4b) respectively, the following discrete equation is established 

 

∑( 𝜌𝑏𝑝𝒖̈𝑏𝑝 ∙ 𝒘𝑏𝑝 𝛺𝑏𝑝 
 )

𝑁𝑝

𝑝=1

+ ∑( 𝝈𝑏𝑝: 𝛻𝒘𝑏𝑝 𝛺𝑏𝑝 
 )

𝑁𝑝

𝑝=1

= ∑( 𝒃𝑏𝑝 ∙ 𝒘𝑏𝑝 𝛺𝑏𝑝 
 )

𝑁𝑝

𝑝=1

= ∫ (𝒕̅𝑏 ∙ 𝒘𝑏)
𝜕𝛺𝑏𝑡̅

𝑑𝜕𝛺𝑏𝑡̅ + ∫ (𝒇̅𝑏
𝑐𝑜𝑛𝑡 ∙ 𝒘𝑏)

𝜕𝛺𝑏𝑓̅

𝑑𝜕𝛺𝑏𝑓̅ 

 (6) 

 

The displacement field 𝒖𝑏𝑝 (also 𝒖̇𝑏𝑝
  and 𝒖̈𝑏𝑝 

 ) and the weighting functions 𝒘𝑏𝑝 are interpolated at 

corresponding nodal values as 

  

𝒖𝑏𝑝 = ∑( 𝑁𝐼( 𝒙𝑏𝑝 
 ) ∙ 𝒖𝑏𝐼 

 )

𝑁𝑛

𝑝=1

 (a) 𝒘𝑏𝑝 = ∑( 𝑁𝐼( 𝒙𝑏𝑝 
 ) ∙ 𝒘𝑏𝐼 

 )

𝑁𝑛

𝑝=1

 (b) (7) 

 

where in this work, 𝑁𝐼( 𝒙𝑏𝑝 
 ) are higher-order B-spline interpolation (Hughes T.J.R. 2012) functions 

of node 𝐼 evaluated at the material points 𝒙𝑏𝑝 
 . After the necessary algebraic manipulations equation 

(6) is eventually cast in the following compact form at time 𝑡  

 

𝑴𝑏𝐼
𝑢 

 
(𝑡) 𝒖̈𝑏𝐼 

(𝑡) + 𝑭𝑏𝐼
𝑖𝑛𝑡

 
(𝑡) = 𝑭𝑏𝐼

𝑒𝑥𝑡
 

(𝑡) + 𝑭𝑏𝐼
𝑐𝑜𝑛𝑡

 
(𝑡)    (8) 

 

where 𝑭𝑏𝐼
𝑖𝑛𝑡

 
(𝑡)  corresponds to the nodal components of the internal force vector at node I as 

 

𝑭𝑏𝐼
𝑖𝑛𝑡 = 

(𝑡) ∑(𝛻𝑁𝐼( 𝒙𝑏𝑝 
(𝑡) ) · 𝝈𝑏𝑝 

(𝑡) 𝛺𝑏𝑝 
 )

𝑁𝑝

𝑝=1

  (9) 

 

whereas 𝑭𝑏𝐼
𝑒𝑥𝑡

 
(𝑡)  is the component of the external force vector at node I 
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𝑭𝑏𝐼
𝑒𝑥𝑡 = 

(𝑡) ∑ 𝒃𝑏𝑝

𝑁𝑝

𝑝=1

𝑁𝐼( 𝒙𝑏𝑝 
(𝑡) ) 𝛺𝑏𝑝 

 + ∫ 𝒕̅𝑏
𝜕𝛺𝑏𝑡̅

𝑁𝐼( 𝒙𝑏𝑝 
(𝑡) )𝑑𝜕𝛺𝑏𝑡̅  (10) 

 

respectively. The lumped mass matrix 𝑴𝑏𝐼
𝑢 

 
(𝑡)  is evaluated as 

 

𝑴𝑏𝐼
𝑢 

 
(𝑡) = ∑ 𝜌𝑏𝑝

𝑁𝑝

𝑝=1

𝑁𝐼( 𝒙𝑏𝑝 
(𝑡) ) 𝛺𝑏𝑝 

   (11) 

 

Considering a forward Euler integration scheme, equation of motion (8) can be conveniently 

established in the following momentum form 

 

𝒑𝑏𝐼
 

 
(𝑡+𝛥𝑡) = 𝒑𝑏𝐼

 + 𝛥𝑡( 𝑭𝑏𝐼
𝑒𝑥𝑡 + 𝑭𝑏𝐼

𝑐𝑜𝑛𝑡
 

(𝑡)
 

(𝑡) − 𝑭𝑏𝐼
𝑖𝑛𝑡

 
(𝑡) ) 

(𝑡)   (12) 

 

where 𝒑𝑏𝐼
 

 
(𝑡)  corresponds to the momentum of the discrete field at time 𝑡. This is projected from the 

material points to the computational grid through equation (13)  

 

𝒑𝑏𝐼
 = ∑(𝑁𝐼( 𝒙𝑏𝑝 

(𝑡) )𝑀𝑏𝑝 𝒖̇𝑏𝑝 
(𝑡) )

𝑁𝑝

𝑝=1

 
(𝑡)   (13) 

 

In this work, equation (12) is numerically solved using a predictor-corrector algorithm introduced by 

Bardenhagen S. et al. (2000) and further improved by Huang P. et al. (2010). In this, the trial 

momentums are initially evaluated, neglecting the contact forces, as 

 

𝒑𝑏𝐼
𝑡𝑟𝑙

 
(𝑡+𝛥𝑡) = 𝒑𝑏𝐼

 + 𝛥𝑡( 𝑭𝑏𝐼
𝑒𝑥𝑡

 
(𝑡) − 𝑭𝑏𝐼

𝑖𝑛𝑡
 

(𝑡) ) 
(𝑡)   (14) 

 

The corresponding trial nodal velocities are computed accordingly as  

 

𝒖̇𝑏𝐼
𝑡𝑟𝑙

 
(𝑡+𝛥𝑡) =

𝒑𝑏𝐼
𝑡𝑟𝑙

 
(𝑡+𝛥𝑡)

𝑴𝑏𝐼
𝑢

 
(𝑡)

  (15) 

 

and correspond to the velocities of each discrete field 𝑏 when no contact force is exerted between 

them. The nodal centre of mass velocities are calculated using equation (16) below  

 

𝒖̇𝐼
𝑐𝑚

 
(𝑡+𝛥𝑡) =

∑ 𝒑𝑏𝐼
𝑡𝑟𝑙

 
(𝑡+𝛥𝑡)2

𝑏=1

∑ 𝑴𝑏𝐼
𝑢

 
(𝑡)2

𝑏=1

  (16) 

 

These correspond to the velocities that each discrete field 𝑏 would have if these were to move a single 

field (non-slip contact). Using equations (15) and (16) the normal component of contact force is 

expressed as 

 

𝐹𝑏𝐼
𝑛𝑜𝑟,𝑠

 
(𝑡) =

𝑀𝑏𝐼
𝑢

 
(𝑡)

𝛥𝑡
( 𝒖̇𝑏𝐼

𝑐𝑚
 

(𝑡+𝛥𝑡) − 𝒖̇𝑏𝐼
𝑡𝑟𝑙

 
(𝑡+𝛥𝑡) ) · 𝒏𝑏𝐼

𝑐𝑜𝑛𝑡
 

(𝑡)   (17) 

 

where the surface unit normal vector is computed as 

 

𝒏1𝐼
𝑐𝑜𝑛𝑡 = − 𝒏2𝐼

𝑐𝑜𝑛𝑡 =  
(𝑡)

 
(𝑡) 𝒏̂1𝐼

𝑐𝑜𝑛𝑡
 

(𝑡) − 𝒏̂2𝐼
𝑐𝑜𝑛𝑡

 
(𝑡)

‖ 𝒏̂1𝐼
𝑐𝑜𝑛𝑡

 
(𝑡) − 𝒏̂2𝐼

𝑐𝑜𝑛𝑡
 

(𝑡) ‖
  (18) 

 

where 
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𝒏̂𝑏𝐼
𝑐𝑜𝑛𝑡

 
(𝑡) =

∑ 𝛻𝑁𝐼( 𝒙𝑏𝑝 
(𝑡) )

𝑁𝑝

𝑝=1 𝑀𝑏𝑝

‖∑ 𝛻𝑁𝐼( 𝒙𝑏𝑝 
(𝑡) )𝑀𝑏𝑝

𝑁𝑝

𝑝=1 ‖
  (19) 

 

To satisfy the non-tensional constrain during contact, the normal component should be modified as  

 

𝐹𝑏𝐼
𝑛𝑜𝑟

 
(𝑡) = min(0, 𝐹𝑏𝐼

𝑛𝑜𝑟,𝑠
 

(𝑡) )  (20) 

 

 Similarly, the tangential component of contact force is computed as 

𝐹𝑏𝐼
𝑡𝑎𝑛,𝑠

 
(𝑡) =

𝑀𝑏𝐼
𝑢

 
(𝑡)

𝛥𝑡
( 𝒖̇𝑏𝐼

𝑐𝑚
 

(𝑡+𝛥𝑡) − 𝒖̇𝑏𝐼
𝑡𝑟𝑙

 
(𝑡+𝛥𝑡) ) · 𝒔𝑏𝐼

𝑐𝑜𝑛𝑡
 

(𝑡)   (21) 

 

where the surface unit tangential vector 𝒔𝑏𝐼
𝑐𝑜𝑛𝑡

 
(𝑡)  can be derived as the unit vector that forms an 

orthogonal basis with 𝒏𝑏𝐼
𝑐𝑜𝑛𝑡

 
(𝑡) . The tangential component can be further modified, considering the 

Coulomb friction model, as 

 

𝐹𝑏𝐼
𝑡𝑎𝑛

 
(𝑡) = min(𝜇𝑓| 𝐹𝑏𝐼

𝑛𝑜𝑟
 

(𝑡) |, | 𝐹𝑏𝐼
𝑡𝑎𝑛,𝑠

 
(𝑡) |) sign( 𝐹𝑏𝐼

𝑡𝑎𝑛,𝑠
 

(𝑡) )  (22) 

 

Therefore, the contact force is eventually evaluated as 

 

𝑭𝑏𝐼
𝑐𝑜𝑛𝑡

 
(𝑡) = 𝐹𝑏𝐼

𝑛𝑜𝑟
 

(𝑡) · 𝒏𝑏𝐼
𝑐𝑜𝑛𝑡

 
(𝑡) + 𝐹𝑏𝐼

𝑡𝑎𝑛
 

(𝑡) · 𝒔𝑏𝐼
𝑐𝑜𝑛𝑡

 
(𝑡)   (23) 

 

when the impenetrability condition ( 𝒖̇𝑏𝐼
𝑡𝑟𝑙

 
(𝑡+𝛥𝑡) − 𝒖̇𝑏𝐼

𝑐𝑚
 

(𝑡+𝛥𝑡) ) · 𝒏𝑏𝐼
𝑐𝑜𝑛𝑡

 
(𝑡) > 0 is satisfied at contact 

nodes. To account for the true velocities, the initially predicted trial velocities 𝒖̇𝑏𝐼
𝑡𝑟𝑙

 
(𝑡+𝛥𝑡)  introduced in 

equation (15) should be corrected according to the following relation 

 

𝒖̇𝑏𝑝 
(𝑡+𝛥𝑡) = 𝒖̇𝑏𝐼

𝑡𝑟𝑙
 

(𝑡+𝛥𝑡)  + 𝛥𝑡
𝑭𝑏𝐼

𝑐𝑜𝑛𝑡
 

(𝑡)

𝑴𝑏𝐼
𝑢

 
(𝑡)

  (24) 

 

Once the velocities 𝒖̇𝑏𝑝 
(𝑡+𝛥𝑡)  are computed, the total strains at 𝑝𝑡ℎ material point can be evaluated as  

 

𝜺𝑏𝑝 
(𝑡+𝛥𝑡) = 𝜺𝑏𝑝 

(𝑡) +
1

2
𝛥𝑡 ∑ (𝛻𝑁𝐼( 𝒙𝑏𝑝 

(𝑡) ) 𝒖̇𝑏𝐼 
(𝑡+𝛥𝑡) + (𝛻𝑁𝐼( 𝒙𝑏𝑝 

(𝑡) ) 𝒖̇𝑏𝐼 
(𝑡+𝛥𝑡) )

𝑇
)

𝑁𝑛

𝐼=1

  (25) 

 

while the total stresses from the relation below 

 

𝝈𝑏𝑝 
(𝑡+𝛥𝑡) = 𝐷𝑏𝑝 𝜺𝑏𝑝 

(𝑡+𝛥𝑡)   (26) 

 

where 𝐷𝑏𝑝 stands for the constitutive matrix. Finally, the displacement, velocity and acceleration field 

of 𝑝𝑡ℎ material point are updated as 

 

𝒖𝑏𝑝 
(𝑡+𝛥𝑡) = 𝒖𝑏𝑝 

(𝑡) + 𝛥𝑡 ∑(𝑁𝐼( 𝒙𝑏𝑝 
(𝑡) ) 𝒖̇𝑏𝐼 

(𝑡+𝛥𝑡) )

𝑁𝑛

𝐼=1

  (27) 

 

𝒖̇𝑏𝑝 
(𝑡+𝛥𝑡) = 𝒖̇𝑏𝑝 

(𝑡) + 𝛥𝑡 ∑ (𝑁𝐼( 𝒙𝑏𝑝 
(𝑡) )

𝑭𝑏𝐼
𝑒𝑥𝑡

 
(𝑡) + 𝑭𝑏𝐼

𝑐𝑜𝑛𝑡 − 𝑭𝑏𝐼
𝑖𝑛𝑡

 
(𝑡)

 
(𝑡)

𝑴𝑏𝐼
𝑢

 
(𝑡)

)

𝑁𝑛

𝐼=1

  (28) 

 

and 
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𝒖̈𝑏𝑝 
(𝑡) = ∑ (𝑁𝐼( 𝒙𝑏𝑝 

(𝑡) )
𝑭𝑏𝐼

𝑒𝑥𝑡
 

(𝑡) + 𝑭𝑏𝐼
𝑐𝑜𝑛𝑡 − 𝑭𝑏𝐼

𝑖𝑛𝑡
 

(𝑡)
 

(𝑡)

𝑴𝑏𝐼
𝑢

 
(𝑡)

)

𝑁𝑛

𝐼=1

  (29) 

 

respectively. The material point position is hence updated according to the following relation  

 

𝒙𝑏𝑝 
(𝑡+𝛥𝑡) = 𝒙𝑏𝑝 

(𝑡) + 𝛥𝑡 ∑(𝑁𝐼( 𝒙𝑏𝑝 
(𝑡) ) 𝒖̇𝑏𝐼 

(𝑡+𝛥𝑡) )

𝑁𝑛

𝐼=1

  (30) 

leading to formulation that explicitly and accurately accounts for large displacement kinematics 

without mesh distortion as the latter remains undeformed. 

 

 

4. NUMERICAL RESULTS 

 

The rocking response of a body with dimensions 2𝑏 = 0.795 m and 2ℎ = 3.113 m, shown in Figure 

4(a) resting on an elastic medium is simulated herein using the proposed MPM scheme. The body is 

subjected to a horizontal ground acceleration prescribed by a single sinusoidal pulse defined in 

equation (31) as  

 

𝑢̈𝑔 = {
𝑎 sin(𝜔 𝑡) , 0 ≤ 𝑡 <

2𝜋

𝜔

0, 𝑡 ≥
2𝜋

𝜔

   (31) 

 

where 𝑎 and 𝜔 are the amplitude and the frequency of the excitation respectively. The Young’s 

modulus and Poisson ratio of the ground are 𝐸 = 260 MPa and 𝑣 = 0.30 respectively. The 

corresponding parameters for the body are chosen as 𝐸 = 5200 MPa and 𝑣 = 0.30. The parameters 

were chosen so that the body is substantially more rigid than the support medium. This allows for 

comparison versus previous work in the literature as the dimensions of the specific body under the 

assumption of it being rigid have been used in the works of Zhang and Makris (2001) and Chatzis and 

Smyth (2012a & 2012b). The mass density of the ground is 𝜌 = 1300 kg/m3 whereas the mass density 

of the rigid body is 𝜌 = 606.101 kg/m3. The latter allows for comparing versus the mass per unit 

length used for this body in Chatzis and Smyth (2012a). The friction coefficient between the rocking 

body and the ground is 𝜇𝑓 = 0.625. 

 

According to the MPM formulation introduced in Section 3 two discrete fields are considered; one 

corresponding to the rigid body and one corresponding to the elastic medium. The former is 

discretized into 8928 material points whereas 7200 material points are used for the latter. Quadratic b-

splines are utilized for the background grid with cell spacing 0.05 m and plane strain conditions are 

assumed. Initially, the material points are positioned in the Gauss positions of each parent cell; the cell 

density is 3x3. A time step 𝛥𝑡 = 0.00001 sec is employed. The ground excitation is applied to MPM 

model employing D' Alembert's principle. 

 

As has been initially shown in Zhang and Makris (2001), utilizing the IPM, the outcome of the body, 

in terms of survival or toppling, when subjected to single cycle acceleration pulses of varying 

frequency and amplitude (𝜔, 𝑎) offers useful information on the stability of the system. By varying the 

values of 𝜔 and 𝑎 in the horizontal and vertical axes respectively and by denoting for a given 

frequency the amplitudes at which a transition between survival and failure is observed the stability 

diagram of Figure 4(b) can be generated. In such a diagram, three distinct regions can be observed: a 

region of survival, a closed region (loop) where the body topples having experienced a single impact 

with the ground, and an area of failure occurring for larger amplitudes where the body fails without 

having experienced an impact. The boundaries between those regions for the IPM are indicated in 

Figure 4(b) with a magenta hexagram. Using a deformable WM for the support medium, for the same 
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body Chatzis and Smyth (2012a) produced a stability diagram which also included the presence of the 

three regions. The WM predicted boundaries are also plotted in Figure 4(b) with a golden square. 

 

A set of 127 analyses is carried out with various pairs of (𝜔, 𝑎) to derive the stability diagram of 

Figure 4(b). The axes are normalized as 𝜔/𝑝 and  𝑎/𝑎𝑔 respectively, where 𝑝 = 2.14 and 𝑎𝑔 =

2.5049. In this work green dots, blue pentagrams and red diamonds correspond to the result obtained 

from the proposed MPM model and account for safe, failure with impact and failure without impact 

respectively. It should be noted the body is considered to survive, after experiencing two impacts 

without failure during its free vibration response. The body is considered to fail when |𝜃| > 85𝜊 

where 𝜃 is the angle between the rocking body and the ground. The obtained results are superimposed 

on the boundaries predicted by the IPM and WM models. 

 

 
(a) (b) 

 
Figure 4. (a) Geometry and boundary conditions (b) Failure-safety analysis with the WM, IPM and MPM. 

 

As shown in Figure 4(b), the proposed MPM method demonstrates a very good agreement with WM. 

The two methods predict that the failure with no impact regions extends to larger frequencies than 

those predicted by the IPM model under the assumption of conserving angular moment with respect to 

the future rocking corner. This phenomenon has been further explained in Chatzis et al. (2017) where 

it is argued that bodies with a flat base would not necessarily satisfy this assumption. Similarly to the 

WM, MPM does not need to adopt such an assumption, but rather relies on modeling the properties of 

the bodies in contact and accurately resolving the corresponding contact interfaces. It is further 

expected that the MPM model would show a better agreement to the results in Zhang and Makris 

(2001) if the same body had feet on the two corners, similarly to what has been demonstrated in 

Chatzis and Smyth (2012a) for the Concentrated Spring Model (CSM). 

 

It should further be stated that the stability diagram for the WM shown in Chatzis and Smyth (2012a) 

and in Figure 4(b) uses an estimate of the properties on the contact interface stiffness and damping 

based on the model of Wolf (1994), which essentially simulates the support medium as an elastic half-

space. It further appears that this model is also reasonable for the case studied here. However, the 

MPM does not need to make an assumption on the contact interface properties which is a further 

advantage of the model presented herein.  

 

In the following, three individual cases are presented for each failure-safety condition. In the first case, 

the pair 𝜔/𝑝 = 3 , 𝑎/𝑎𝑔 = 1 results in survival for the rocking body. A snapshot of the response of 

the rocking body is presented in Figure 5 at chosen time instances. The ground excitation and rocking 

body angle time histories are presented in Figure 6. In the second case, the frequency is the same ratio 

𝜔/𝑝 = 3 is considered while the amplitude is increased to 𝑎/𝑎𝑔 = 2.5. That pair leads the rocking 

body to toppling after having experience one impact with the ground. The complete rocking response 

is represented in Figure 7. Similarly, the ground excitation and rocking angle time-histories are shown 

in Figure 8.  

 

In the third case, the amplitude is increased to 𝑎/𝑎𝑔 = 3.5. This amplitude seems to be adequate to 
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overturn the rocking body without impact. The corresponding rocking motion is presented in Figure 9 

whereas the ground excitation time-history and corresponding rocking angle are shown in Figure 10. 

 

  
(a) (b) 

  
(c) (d) 

Figure 5. 𝜔/𝑝 = 3 and 𝑎/𝑎𝑔 = 1  (Safe): Rocking body response for (a) 0 sec (b) 0.47 sec (c) 1.20 sec and (d) 

2.10 sec. 

 

  
(a) (b) 

Figure 6. 𝜔/𝑝 = 3 and 𝑎/𝑎𝑔 = 1  (Safe): Plots over time for (a) ground excitation (acceleration pulse) (b) 

rocking body angle with ground [labels a, b, c, d correspond to Figure 5 sub-captions].  

 

  
(a) (b) 

  
(c) (d) 

Figure 7. 𝜔/𝑝 = 3 and 𝑎/𝑎𝑔 = 2.5  (Failure (impact)): Rocking body response for (a) 0 sec (b) 0.73 sec (c) 2.51 

sec and (d) 2.90 sec. 



11 

 

 

  
(a) (b) 

Figure 8. 𝜔/𝑝 = 3 and 𝑎/𝑎𝑔 = 2.5  (Failure (impact)): Plots over time for (a) ground excitation (acceleration 

pulse) (b) rocking body angle with ground [labels a, b, c, d correspond to Figure 7 sub-captions]. 

 

  
(a) (b) 

  
(c) (d) 

Figure 9. 𝜔/𝑝 = 3 and 𝑎/𝑎𝑔 = 3.5  (Failure (no impact)): Rocking body response for (a) 0 sec (b) 1.50 sec (c) 

2.20 sec and (d) 2.58 sec. 

 

  
(a) (b) 

Figure 10. 𝜔/𝑝 = 3 and 𝑎/𝑎𝑔 = 3.5  (Failure (no impact)): Plots over time for (a) ground excitation 

(acceleration pulse) (b) rocking body angle with ground [labels a, b, c, d correspond to Figure 9 sub-captions]. 

 

 

5. CONCLUSIONS 

 

A material point method is presented for the simulation of rocking body dynamics. The method is 

rigorously established within a discrete field setting. In this, solution of the governing equations of 

motion is performed for each field individually while contact conditions between fields are explicitly 
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introduced into the strong form of the problem through appropriate boundary conditions. Solution of 

the resulting governing equations is performed in an explicit manner using a predictor corrector 

algorithm.  

 

Results obtained with the proposed numerical for the case of a rigid body over an elastic half-space are 

compared against the Inverted Pendulum and Winkler rocking models. Results indicate that the 

numerical predictions are in good agreement with the estimates of both the Inverted Pendulum Model 

and the Winkler Model. As no assumption needs to be implied on either the stiffness of the rocking 

body or the contact interface properties, the proposed method provides an attractive alternative for the 

simulation of more complex problems, e.g., rocking of deformable and non-elastic bodies. 
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