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ABSTRACT 
 

The well-known concept of rocking isolation has emerged as a useful way to limit seismic damage at the base of 

building columns or bridge piers. Since the 1960s, several researchers have presented analytical solutions for the 

two-dimensional rocking response of free-standing rigid structures, highlighting the key role of the coefficient of 

restitution to attenuate the rocking motion when impact occurs. Special-purpose software packages based on the 

Discrete Element Method (e.g. UDEC and 3DEC, among others) have been developed to tackle the rigid rocking 

problem. At the same time, there has been little progress in modelling the two-dimensional rocking response of 

rigid bodies using Finite element (FE) models, which are widely used in many other structural applications. 

The present work focuses on the development of adequate FE models in the general-purpose software ABAQUS 

to study the two-dimensional rocking response of free-standing rigid columns and frames. Assuming a rigid 

foundation subjected to sinusoidal motions, different rigid columns and frames with varying slenderness and 

coefficient of restitution are examined. Additionally, rigid frames under strong ground motions are also studied. 

Generally, a good agreement between the numerical results and the analytical expressions is observed. The 

results suggest that the selection of the analysis parameters, including the type of time step incrementation and 

its magnitude, and the mesh size, is crucial to capture the response of free-standing rigid blocks and frames. 
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1. INTRODUCTION  

 

The two-dimensional rocking response of free-standing rigid columns resting on rigid foundation 

under seismic excitation has been studied for more than a century (Milne 1885). The beneficial 

isolation effects and the attractive concept of the inherent negative stiffness (introduced for the first 

time by Muto et al. 1960) of rocking structures have been widely observed, making rocking a useful 

design approach to mitigate damage in vertical elements. Housner (1963) introduced the basic 

equations of motion of free-standing rigid columns, and paved the way for a number of more recent 

studies on this topic (Makris and Roussos 2000, Dimitrakopoulos and DeJong 2012, among others). 

The dynamic stability of the free-standing column made the concept of rocking very attractive as an 

isolation technique by creating structural framing systems without fixed joints between the individual 

members (Makris and Vassiliou 2013, Dimitrakopoulos and Giouvanidis 2015, among others). When 

a rocking structure starts and sustains a pure rocking motion without overturning, the energy is only 

dissipated during impact and it can be described analytically by the coefficient of restitution. The 

effect of impact depends on two factors: (1) the angular velocity just prior to impact (Jankowski 2007) 

and (2) the elastic and inelastic properties of the interface material (Roh and Reinhorn 2006). 
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However, it has been shown that the coefficient of restitution in rigid body rocking depends only on 

the slenderness, Ŭ, of the column (Housner 1963) and an additional parameter for the symmetric in 

height rigid frame, ɔ, introduced as the ratio of the mass of the cap beam to the mass of all the rocking 

columns (Makris and Vassiliou 2013).  

The general-purpose software ABAQUS (ABAQUS 6.14 2014) provides a broad range of contact 

interaction properties and has already been used for numerical investigations in rocking problems 

(ElGawady and Dawood 2012, Sideris 2015, Titirla et al. 2017, Agalianos et al. 2017, among others). 

In these studies, elastic or inelastic deformable sections were used for the rocking columns, while rigid 

rocking has been usually studied numerically with special-purpose software packages based on the 

Discrete Element Method, like UDEC and 3DEC (Psycharis et al. 2003, Psycharis et al. 2013, among 

others), rather than general-purpose Finite Element (FE) software packages such as ABAQUS.  

The present study assesses the feasibility of using óstandardô finite element software for modelling the 

two-dimensional rocking response of free-standing rigid columns and frames; namely, the nonlinear 

implicit dynamic analysis in ABAQUS is used. Selecting the implicit solver is recommended because 

the rocking bodies are rigid; this represents a novelty of this work given that previous studies mainly 

adopt explicit analyses. In the ideal case of a rigid column on a rigid foundation, the only damping 

mechanism directly related to the rocking response is introduced by its impact against the surface 

where it rests. The implicit solution does not allow to define the coefficient of restitution used to 

quantify damping in the analytical method. It is observed that other analysis parameters seem to 

influence significantly the dissipation mechanism and hence the numerical results. This work presents 

an optimisation of these parameters to obtain a good correlation with the analytical solution. 

 

 

2. PROPOSED MODELLING PROCEDURE 

 

Generally, ABAQUS provides two different approaches for solving non-linear problems like the one 

considered herein: (1) Explicit analysis and (2) Implicit analysis. Typically, each type of analysis is 

appropriate for a certain class of problems. Implicit analysis is more efficient for solving smooth 

nonlinear problems wherein response evolves over a relatively long time, while the explicit approach 

is the proper choice for problems involving impacts that generate fast wave propagation. Such cases 

are computationally expensive in implicit analysis because in each iteration the solver handles a large 

number of linear equations. Although the explicit analysis is more adequate for impacts related to 

rocking, it cannot provide reliable results when the bodies are rigid because the wave propagation 

velocity is theoretically infinite. Hence, in this case an implicit analysis is recommended.  

The following sections present the modelling procedure that was followed in order to capture 

adequately the rocking response of rigid columns and frames. Two different members are modelled 

including the rigid bodies and the rocking interfaces (Figure 1), paying particular attention to three 

parameters that were found crucial for the accuracy of the results, namely (i) the type of the time 

incrementation, i.e. fixed or automatic, (ii) the time step value, and (iii) the mesh size.  

 

2.1 Rigid Bodies 

 

The rigid body motion is enforced to the different members with a constraint applied to the deformable 

bodies. The centre of gravity of each member is used as the reference point in the formulation of this 

constraint to relate the movement of the corresponding member to the movement of its reference point. 

The column, the foundation and the pier cap are modelled using 4-node bilinear plane stress 

continuum elements with full integration (CPS4). It was found that using reduced integration 

continuum elements (CPS4R) gives very similar results. A homogeneous elastic material with 

Youngôs modulus and Poissonôs ratio equal to 30GPa and 0.20 (typical values for concrete), 

respectively, is assigned to the members. The mass and the rotary inertia of the rigid bodies, which are 

the only restoring mechanisms involved in rocking response, are defined through the density of the 

material: 2,500kg/m3 (=2.5tn/m3). Although this is a distributed mass definition, the rigid body 

constraint formulation lumps the total mass of the member at the defined reference point and assigns 

the rotary inertia of the block as I = Ɇ(mĀR2) = 4mĀR2/3. Different values of the material density were 

examined in a preliminary study and it was verified that density has no influence on the rocking rigid 
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response in the FE analysis, which is consistent with the analytical solution.  

 

 
 

Figure 1. A free-standing rocking rigid column and frame in rocking motion with the proposed modelling 

members. 

 

2.2 Rocking Interface 

 

A different contact pair between the corresponding surfaces (foundation-column and column-deck) is 

used to define the interaction between them, as shown in Figure 1. Due to the nature of the rocking 

contact problem in which the rigid column can rotate with respect to a pivot point, the node-to-surface 

contact discretisation is selected between the two pivot points and the corresponding surface. The 

contact relation between the adjacent members is with no resistance in tension and a ñhardò contact 

pressure-overclosure relationship is defined, with essentially infinite stiffness in the normal direction 

to prevent penetration of the pivot points in the foundation or the pier cap (master) surfaces. 

Separation of the two members in contact is allowed with the augmented Lagrange method in order to 

facilitate the solution of the contact problem. Sliding between the contact surfaces is prevented during 

analysis by means of an infinite coefficient of friction. 

 

2.3 Analysis Process 

 

The implicit Hilber-Hughes-Taylor (HHT) algorithm (Hilber et al. 1977) is selected to integrate the 

system of equations of dynamic equilibrium. The numerical damping introduced by the HHT 

algorithm is controlled through the parameter ŬHHT. A preliminary analysis showed that varying this 

parameter within its limit values, -0.50 and 0.00, does not affect the response. Consequently, ŬHHT is 

set equal to -0.333 in this work to provide the maximum numerical dissipation to the high-order 

frequency noise in the response (Hilber et al. 1977). It should be noted that this damping was the only 

source of dissipation introduced in this work. No other damping models were utilised and, as in the 

ideal case of a rigid column or frame on a rigid foundation, the only damping mechanism directly 

related to the rocking response is due to the consecutive impacts. These introduce an instantaneous and 

discontinuous energy dissipation mechanism, as suggested by the analytical solution. ABAQUS does 

not allow specification of a coefficient of restitution in the definition of contact between surfaces, but 

an adequate attenuation of the rocking motion has been observed, depending on the analysis time step 

and the mesh size, as will be discussed in the next sections. It is highlighted that the analyses presented 

below refer to rigid blocks only, but, albeit not presented herein, the same trends are met for the 

corresponding rigid frames; hence the outcomes for the analysis parameters apply to both 

configurations  

 

2.3.1 Influence of the Type of Time Incrementation 

 

The free-standing rigid column with 2H=1.2m and 2B=0.4m shown in Figure 1 is subjected to a sine 

pulse with amplitude Ŭp=0.55g and duration Tp=0.5s; the duration of the rocking motion is 3.0s. This 

numerical model was run with different incrementation types: (1) fixed time incrementation with time 

step 10-3s (for this analysis the output is requested in 3000 time steps), and (2) automatic 

incrementation using maximum time step equal to 10-3s. The element size is kept constant and uniform 
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in the entire column, with 4 mm-side square finite elements, i.e. sides of 1% of the corresponding 

contact surface. Figure 2 shows the horizontal (x) displacement of the Centre of Gravity (CG) of the 

rigid rocking column. The fixed time incrementation yields accurate results that are close to the 

analytical prediction. With the automatic incrementation, generally preferred in nonlinear analysis 

because the time step adapts to the requirements of the problem, the rocking response shows a 

considerable delay in the time instant of the impacts, and this type of phase error builds up with each 

impact during the analysis. On the basis of the results obtained, the rest of the analyses are run using 

the fixed incrementation option. 

 

 
 

Figure 2. Horizontal (x) displacement time-history at the CG of a rigid column (2H=1.2m, 2B=0.4m) with fixed 

and automatic incrementation. Block subjected to a sine pulse excitation with amplitude Ŭp=0.55g and duration 

Tp=0.5s.  

 

2.3.2 Influence of the Time Step  

 

Consider a free-standing rigid column, as shown in Figure 1, with 2H=1.2m and 2B=0.4m. In this case 

an initial rotation ɗo=0.15rad=0.5Ŭ, where Ŭ is the slenderness of the block, is applied to the column in 

order to study a different type of rocking excitation; the duration of the analysis is increased to 4.0s. 

Three values of the time-increment are examined, namely 1, 5 and 10ms, which correspond to 4000, 

800 and 400 analysis data points. The element size is kept constant to 4mm in the entire column. The 

horizontal (x) displacement at the CG of the rocking rigid column is shown in Figure 3. The results 

show that larger time steps lead to a faster attenuation of the rocking response compared to the 

analytical solution, which consequently leads to a significant time delay in the rocking motion after the 

first cycles of motion. However, the smallest time step (10-3s or N=4000 points) yields very accurate 

results and the response is almost identical with the analytical solution. 

The influence of the time step can be explained by examining the energy balance of the rigid rocking 

system: 

 

ETOTAL = EKE ï EW ï ECW (1) 

 

where the total energy of the rocking system (ETOTAL) equals to the kinetic energy (EKE) of the block 

minus the external work (EW) and the ódiscontinuity workô (ECW). The external work in the block is the 

sum of the stored and part of the dissipated energy due to contact forces. The discontinuity work 

gathers the work done by contact forces which cannot be accounted for by the other energy variables 

with a physical meaning. Although, according to the ABAQUS documentation, ECW can have a 

significant value without introducing noticeable errors, at least in this case it is very influential and the 

errors in the rocking response are significant when ECW is large, as it will be shown in the following. 

The energy balance in the two-dimensional free rocking response of the column with time steps of 1 

and 10ms is shown in Figure 4.  
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Figure 3. Horizontal (x) displacement time history at the CG of a rigid column (2H=1.2m, 2B=0.4m) for 

different time steps. Free rocking under an initial rotation ɗɞ=0.5Ŭ.  

 

The external work (EW) appears to peak at each impact of the column. The kinetic energy (EKE) is also 

maximised at those instances but it is reduced gradually as the rocking motion continues. This is 

because it depends on the square of the velocity of the column, which attenuates after each impact. 

The impacts also affect the ódiscontinuity workô (ECW) and the total energy (ETOTAL), which are almost 

constant between those instants. The large difference in terms of the discontinuity work for these 

models reveals the high influence of this energy component on the rocking response analysis in the FE 

solution. The smaller the time increment the lower is ECW compared to the other energy sources, which 

improves significantly the accuracy of the numerical results as shown in Figure 3. This is because for 

reduced time steps (e.g. 1ms) the time intervals at which the contact forces after and before impact are 

calculated are very close to each other and the ñdiscontinuity workò is reduced. On the other hand, 

ECW is significantly large when the time step is 10ms which leads to an unrealistically fast attenuation 

of the rocking motion. 

 

 
 

Figure 4. Energy balance of a rigid column (2H=1.2m, 2B=0.4m) for two different time steps. The block is 

allowed to rock freely under an initial rotation ɗɞ=0.5Ŭ. 

 

2.3.3 Influence of the Mesh Size 

 

Consider the free-standing rigid column shown in Figure 1 with 2H=1.2m and 2B=0.3m. In this case a 

sinusoidal motion is imposed on the foundation surface with amplitude Ŭp=0.40g and duration Tp=0.5s 

to idealise an earthquake pulse; the duration of the analysis is 6 s. Three different values of the 

element size have been considered, namely 1% (0.003m), 2% (0.006m) and 5% (0.015m) of the 

corresponding contact surface. The fixed time step in this case is kept constant to 1ms (6000 data-

points), which renders the most accurate solution for this case as was found previously. The horizontal 

(x) displacement at the CG of the rigid rocking column under the sinusoidal pulse is shown in Figure 

5. Regardless of the element size the models capture very accurately the uplift of the column during 

the excitation and the subsequent attenuation phases of the rocking motion. The displacements in all 

models during the base motion (from 0.00 to 0.50s) are very similar. However, during the free rocking 

stage (i.e. after the base excitation ceases) the first rocking cycle is significantly longer in the model 

with the coarsest mesh (mesh size equal to 5% of the base length), which introduces a time-delay in 

the response that is increased at each cycle in the rest of the free rocking motion.  
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Figure 5. Horizontal (x) displacement time history at the CG of a rigid column (2H=1.2m, 2B=0.3m) for 

different mesh sizes. Block subjected to a sine pulse excitation with amplitude Ŭp=0.40g and duration Tp=0.5s. 

 

Although no damping sources are specifically introduced in the model, ABAQUS attenuates the 

rocking motion by decreasing the angular velocity of the rocking block at each impact. In order to 

compare the attenuation given by ABAQUS and the analytical result, the numerical solution is post-

processed and an equivalent coefficient of restitution (Õr) is presented in Table 1. This is calculated as 

the ratio of the angular velocities after and before impact. The velocity before impact is obtained by 

linear interpolation considering the fixed time incrementation because in some cases the exact instant 

at which impact occurs is not captured, as shown in Table 1. The error (given in parentheses) is with 

respect to the analytical solution. The different models in the columns represent different 

discretisations in which the element size is given as a percentage of the contact length. 

 
Table 1. Numerical coefficients of restitution at different impacts of a rigid column (2H=1.2m, 2B=0.3m) 

subjected to a sine pulse excitation with amplitude Ŭp=0.40g and duration Tp=0.5s.  

 

 

- 

Analytical 

Solution 

Model 1: 

1% of Con. 

Surf. 

Model 2: 

2% of Con. 

Surf. 

Model 3: 

5% of Con. 

Surf. 

 

2nd 

Impact 

 

Time instant  

(s) 
2.00 

2.01 

(0.35%) 

1.96 

(-2.04%) 

2.18 

(8.53%) 

Coefficient of 

restitution  
0.91 

0.88 

(-3.07%) 

0.91 

(-0.11%) 

0.90 

(-1.43%) 

 

6th 

Impact 

 

Time instant  

(s) 
4.61 

4.60 

(-0.11%) 

4.53 

(-1.63%) 

4.80 

(4.23%) 

Coefficient of 

restitution  
0.91 

0.92 

(0.55%) 

0.91 

(-0.66%) 

0.91 

(-0.55%) 

 

9th 

Impact 

 

Time instant  

(s) 
5.74 

5.72 

(-0.42%) 

5.64 

(-1.71%) 

5.93 

(3.31%) 

Coefficient of 

restitution  
0.91 

0.93 

(2.08%) 

0.88 

(-3.84%) 

0.90 

(-1.10%) 

 

It can be seen that the time instants at which impacts occur are well captured, especially in the model 

with the finer mesh. However, the error introduced by the coarser mesh in terms of the coefficient of 

restitution and the instants at which each impact should happen is also clear. Although the model with 

the finer mesh seems to capture the analytical response sufficiently well, as shown in Figure 5, the 

attenuation of the rocking motion is introduced by equivalent numerical restitution coefficients that are 

not constant for different impacts through the rocking motion, unlike in the analytical solution. In the 

following, the finest mesh is considered in the block (i.e. mesh size equal to 1% of the contact length); 

more details about the coefficient of restitution for the finest mesh model are given in the next section. 
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3. EFFECT OF EXCITATION  TYPE ON ROCKING RESPONSE OF VARIOUS SYSTEMS   

 

Two different types of base motions are considered in the following analysis. The first one is a pulse-

type motion in which a parametric investigation on rigid blocks and frames of different slenderness is 

performed. The second type of analysis considers real earthquake records on rigid frames that are 

allowed to rock.  

 

3.1 Pulse-type Motions 

 

A parametric analysis is conducted to examine columns and frames of different slenderness, i.e. with 

different coefficient of restitution in each case. In total, four different columns and frames are 

considered, whose parameters are given in Tables 2 and 3, respectively. The meaning of the geometric 

parameters is included in Figure 1. These structures are subjected to the sine pulses described in Table 

4. The results of all columns and frames are considered in the discussion, however only the results for 

Column 2 and Frame 2 are illustrated in this section; the rest of the results are given in the Appendix.  

 
Table 2. Free-standing rigid column parameters. 

 

Column 

No. 

Height,  

2H (m) 

Width ,  

2B (m) 

Slenderness,  

Ŭ (rad) 

Coefficient of 

restitution, r  

1 1.20 0.40 0.32 0.85 

2 1.20 0.30 0.25 0.91 

3 2.00 0.40 0.20 0.94 

4 2.00 0.20 0.10 0.99 

 
Table 3. Free-standing rigid frame parameters. 

 

Frame 

No. 

Height,  

2H (m) 

Width ,  

2B (m) 

Slenderness,  

Ŭ (rad) 

Influence of 

deck, ɔ 

Coefficient of 

restitution, Ĕr  

1 1.20 0.40 0.32 5.00 0.80 

2 1.20 0.30 0.25 5.00 0.88 

3 2.00 0.40 0.20 5.00 0.92 

4 2.00 0.20 0.10 5.00 0.98 

 

The free-standing rigid columns have the same dimensions as the rigid columns of the corresponding 

free-standing frames and they are subjected to the same sinusoidal pulses. It is noted that for all the 

subsequent numerical models in ABAQUS 6.14 (2014), the same analysis parameters are used, based 

on the outcomes of the analysis process presented in §2, in order to get the most accurate results: 

 

¶ The parameter ŬHHT is set equal to -0.333 (Hilber et al. 1977). 

¶ An implicit direct-integration dynamic analysis with fixed time increment is used. 

¶ The fixed time step value is equal to 10-3s (6000 and 8000 data-points for Column/Frame 

1, 2 and 3, 4, respectively). 

¶ The element size is equal to 1% of the corresponding contact surface. 

 
Table 4. Sinusoidal pulse parameters used for the free-standing rigid columns and frames. 

 

Column/Frame 

No. 

Amplitude,  

Ŭp (g) 

Duration,  

Tp (s) 

Angular frequency,  

ɤp (rad/s) 

1 0.55 0.50 12.57 

2 0.40 0.50 12.57 

3 0.30 0.50 12.57 

4 0.15 0.50 12.57 
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The displacement and the velocity at the the CG of Column 2 (left) and the corresponding 

column of Frame 2 (right) in the horizontal (x) and the vertical (y) directions are presented in 

Figure 6. It can be seen that the analytical and the numerical prediction match almost perfectly, with a 

small time lag at the end of the analysis. This is also observed for the other columns and frames 

presented in the Appendix. Interestingly, in all the numerical models the vertical (y) velocity exhibits 

some degree of noise at the moment of each impact that is not included in the analytical result. 

Although this noise can be considerable after the peak values at each impact, it does not seem to affect 

the rocking response, since the numerical prediction matches well the global analytical solution.  

 

                Column 2: 2H=1.20m, 2B=0.30m                  Frame 2: 2H=1.20m, 2B=0.30m, ɔ=5.00 

 

 

 

 

 
 

Figure 6. Horizontal (x) and vertical (y) displacement and velocity time histories at the CG of Column 2 with 

2H=1.2m, 2B=0.3m (left) and Frame 2 with 2H=1.2m, 2B=0.3m, ɔ=5.0 (right). The excitation is a sine pulse 

with amplitude Ŭp=0.40g and duration Tp=0.5s. 

 

Figure 7 compares the analytical and the numerical value of the restitution coefficients 

determined for different impacts; the former is computed according to 
2

r =(1-3sin Ŭ/2) 

(Housner 1963), while the latter is calculated using the traditional definition of the coefficient of 

restitution, i.e. as the ratio of the angular velocities immediately after and before impact in the 

numerical analysis. Although the calculated response attenuates the rocking motion with a 

coefficient of restitution that is different at each impact, the numerical values are always close 

to the analytical prediction and as a result the average difference for Column 2 is negligible 

(only -1.45%). However, this small difference at each impact between numerical and 
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analytical prediction is possibly the reason behind the time lag which is detected at the end of 

the rocking response. The cumulative error in the numerical prediction becomes more noticeable 

towards the end of the analysis. In all cases ABAQUS seems to predict the rocking response of free-

standing rigid columns with sufficient accuracy. 

 

 
 

Figure 7. Comparison of analytical and the numerical coefficients of restitution for the free-standing rigid 

Column 2 (2H=1.2m, 2B=0.3m) subjected to a sine pulse excitation with amplitude Ŭp=0.40g and duration 

Tp=0.5s. 

 

Figure 8 compares the analytical and the numerical value of restitution coefficients 

determined for different impacts for Frame 2; the former is computed according to 
2

r =(1-3sin Ŭ/2+3ɔcos2Ŭ)/(1+3ɔ) (Makris and Vassiliou 2013). In this case, the differences 

between the two values reach up to -7.5% and 8.9% at the 7th and 10th impact, respectively. 

However, ABAQUS corrects this difference as the average difference is only -0.30%. 

 

 
 
Figure 8. Comparison of analytical and equivalent numerical coefficients of restitution for the free-standing rigid 

Frame 2 (2H=1.2m, 2B=0.3m, ɔ=5.0) subjected to a sine pulse excitation with amplitude Ŭp=0.40g and duration 

Tp=0.5s. 

 

An interesting outcome related to the ability of the software to capture the rocking response of rigid 

systems derives from Table 5, wherein the minimum, maximum and average values of the numerical 

coefficients of restitution are presented for each single column and frame. It appears that the 

attenuation of the response in the numerical analysis depends on the slenderness of the column. This is 

confirmed by the low values of the equivalent numerical coefficients of restitution presented in Table 

5, which are lower for less slender columns and frames, which is consistent with the analytical 

solution. Apart from this, it can be seen that the average value of the numerical restitution coefficients 

tends to the constant analytical prediction in all the considered cases. 

 
Table 5. Comparison of the equivalent numerical coefficient of restitution with the analytical prediction in all the 

cases. 

 

Column 1:  

2H=1.20m, 2B=0.40m 

Column 2:  

2H=1.20m, 2B=0.30m 

Column 3:  

2H=2.00m, 2B=0.40m  

Column 4:  

2H=2.00m, 2B=0.20m 

Anal. Numer. Anal. Numer. Anal. Numer. Anal. Numer. 

0.85 0.74ï0.95 0.91 0.86ï0.93 0.94 0.88ï1.01 0.99 0.97ï0.99 
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Column 1:  

2H=1.20m, 2B=0.40m 

Column 2:  

2H=1.20m, 2B=0.30m 

Column 3:  

2H=2.00m, 2B=0.40m  

Column 4:  

2H=2.00m, 2B=0.20m 

Anal. Numer. Anal. Numer. Anal. Numer. Anal. Numer. 

(avg. 0.81) (avg. 0.90) (avg. 0.93) (avg. 0.98) 

Frame 1:  

2H=1.20m, 

2B=0.40m, ɔ=5.00 

Frame 2:  

2H=1.20m, 

2B=0.30m, ɔ=5.00 

Frame 3:  

2H=2.00m, 

2B=0.40m, ɔ=5.00 

Frame 4:  

2H=2.00m, 

2B=0.20m, ɔ=5.00 

Anal. Numer. Anal. Numer. Anal. Numer. Anal. Numer. 

0.80 0.76ï0.86 

(avg. 0.80) 

0.88 0.81ï0.96 

(avg. 0.88) 

0.92 0.82ï0.98 

(avg. 0.92) 

0.98 0.96ï0.99 

(avg. 0.98) 

 

3.2 Earthquake Ground Motions 

 

In the last section of the study the free-standing rigid frame shown in Figure 1, with 2H=19.2m and 

2B=3.2m is considered. The influence of the deck (when the frame is conceived as an idealised bridge 

system) is taken into account through the parameter ɔ which is set equal to 4.0. In this case the two 

real earthquake ground motions presented in Table 6 are imposed horizontally at the foundation. The 

selection of all the parameters coincides with those presented in Makris and Vassiliou 2013 in order to 

have an analytical solution to compare with.   

 
Table 6. Earthquake records used for the two-dimensional rocking response analysis of the free-standing rigid 

frame. 

 

Earthquake Record Magnitude 

(Mw) 

Epicentral 

distance (km) 

PGA  

(g) 

PGV 

(m/s) 

Kobe Takarazuka/000 6.90 1.20 0.69 0.69 

San Salvador Geotech 

Investigation Centre 

5.40 4.30 0.48 0.48 

 

Similarly with the pulse-type motion analysis, an implicit direct-integration dynamic analysis using 

HHT algorithm (Hilber et al. 1977) is run; the parameter ŬHHT which controls the numerical damping 

introduced by the HHT is set equal to -0.333. Consistently with the analysis process presented in §2, 

the same analysis parameters for the time step value, the mesh size, and ŬHHT are selected in order to 

get the most accurate results. The same analysis parameters are considered in this case, with the 

exception of the time step, which is set as 5ms during the 20-s analysis. , which results in 4000 data-

points. This time step is selected after a previous sensitivity analysis to obtain the most accurate 

solution.  

The horizontal (x) and vertical (y) displacement at the CG of the pier cap are presented in Figure 

9. For the Kobe motion, it can be seen that the numerical response is close to the analytical prediction, 

capturing accurately the peak response value which is of great interest from the design point of view. 

However, the time-lag that was detected for the pulse-type motions is also observed under real 

earthquakes. For the San Salvador record, although the general form of the numerical curve 

approaches the analytical one, the time-lag is more significant from the initiation of rocking, and the 

amplitude of the motion is largely overestimated.  

 

 

4. CONCLUSIONS 

 

General-purpose FE software are not generally used for the prediction of rocking response of 

rigid blocks. Instead, this is generally studied analytically or with specialised software based on 

the Discrete Element Method, which makes difficult their study by engineering practitioners. A new 

modelling procedure is proposed herein for capturing rocking rigid response in the general-

purpose FE software package ABAQUS. Different configurations were analysed in order to 

explore the potential and limitations of the selected package to simulate two-dimensional rigid 

rocking response.  
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Figure 9. Horizontal (x) and vertical (y) displacement time histories at the CG of the pier cap with 2H=19.2m, 

2B=3.2m, ɔ=4.0 subjected to Kobe (left) and San Salvador (right) ground motions. 
 

It is shown that when proper values of critical parameters are used, standard general purpose 

FE programs like ABAQUS can accurately capture the two-dimensional rocking response of 

free-standing rigid columns and frames under simple sinusoidal pulses. Although no coefficient 

of restitution is introduced by the user in ABAQUS, the implicit solver is able to represent the 

dissipation during rocking. The equivalent numerical coefficient of restitution is calculated from the 

response time-history and it was observed that although this coefficient is not constant during the 

analysis, the response matches the analytical solution satisfactorily. The FE solution gives higher 

coefficients of restitution for slenderer rocking columns, which is consistent with the analytical 

solution. Furthermore, real earthquake ground motions were considered. It was found that 

ABAQUS fails to capture the analytically predicted two-dimensional rocking rigid response 

for one of the two cases presented here, which suggests that the frequency content of the 

earthquake affects the distribution of the impacts during the response and this has a 

significant effect on the accuracy of the results.. Although not presented herein, a dependence 

between the frequency content of the earthquake motion and the accuracy of the results has 

been observed, which possibly explains the lack of accuracy of the numerical model. Last but 

not least, it is highlighted that further investigation should be made towards more complex 

rocking configurations, such as those with supplemental devices like tendons and dissipators, 

which add more parameters to the rocking response in comparison with the simple free-

standing case considered in this paper. 
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APPENDIX 

 

                Column 1: 2H=1.20m, 2B=0.40m                  Frame 1: 2H=1.20m, 2B=0.40m, ɔ=5.00 

 

 

  

  

 
 

Figure 10. Horizontal (x) and vertical (y) displacement and velocity time histories at the CG of Column 1 with 

2H=1.2m, 2B=0.4m (left) and Frame 1 with 2H=1.2m, 2B=0.4m, ɔ=5.0 (right) subjected to a sine pulse 

excitation with amplitude Ŭp=0.55g and duration Tp=0.5s. 

 

                Column 3: 2H=2.00m, 2B=0.40m                  Frame 3: 2H=2.00m, 2B=0.40m, ɔ=5.00 
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Figure 11. Horizontal (x) and vertical (y) displacement and velocity time histories at the CG of Column 3 with 

2H=2.0m, 2B=0.4m (left) and Frame 3 with 2H=2.0m, 2B=0.4m, ɔ=5.0 (right) subjected to a sine pulse 

excitation with amplitude Ŭp=0.30g and duration Tp=0.5s. 
 

       Column 4: 2H=2.00m, 2B=0.20m                  Frame 4: 2H=2.00m, 2B=0.20m, ɔ=5.00 

 

 
 

Figure 12. Horizontal (x) and vertical (y) displacement and velocity time histories at the CG of Column 4 with 

2H=2.0m, 2B=0.2m (left) and Frame 4 with 2H=2.0m, 2B=0.2m, ɔ=5.0 (right) subjected to a sine pulse 

excitation with amplitude Ŭp=0.15g and duration Tp=0.5s. 


